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ABSTRACT 

Measures such as sudden cross-sectional divergence is among the factors affecting the characteristics of hydraulic 

jump. If for any reason it is not possible or cost-effective to provide the depth required for the hydraulic jump, then 

gradual or sudden flow cross-sectional divergence can be a good way to reduce the depth required for the jump. In 

this research, using the neural network and FLOW-3D numerical model, a three-dimensional (3D) model for fluid 

simulation, the effect of sudden divergence stilling basin on characteristics was simulated. The results of the neural 

network are very close to the physical model. The study revealed that 3D simulation using Flow-3D software could 

simulate a hydraulic jump with an average error of 2.41%. The efficiency of stilling basins divergent was calculated 

to be 71%, which is higher than the classic stilling basins with an efficiency of 53.3%. Depth after jumping in 

divergent stilling basins modeled at 27.8 and 41.4 l/s was found to be 12 and 25% less than classic basins, 

respectively. Compared to the classical mode in the divergent stilling basins parabolic, gradual, and sudden, the 

decrease in jump length was found to be 25.9%, 27.5%, and 31.8%, respectively. The results showed that the 

sudden divergent stilling basin has the best performance in terms of hydraulic parameters. 

Keywords: Neural Network, Simulation, Stilling Basin, Flow-3D, Divergence 
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INTRODUCTION 
 

The passage of water over the overflow, below the valve, 

as well as the change of waterway slope from a steep slope 

to a gentle slope over a short length, will lead to the 

formation of a hydraulic jump. A hydraulic jump is a 

change of the supercritical state of the flow to the 

subcritical state, associated with a great loss of kinetic 

energy. In this flow, the shallow depth of the current is 

converted to the downstream depth at short distances, 

which is sub-critical depth, and the downstream energy 

decreases downstream (Izadjoo and Shafaei Bajestan, 

2004). Increasing the depth of flow in a short distance and 

decreasing the flow velocity downstream is accompanied 

by high turbulence and turbulence, which gradually 

decreases downstream of this turbulence and turbulence of 

the water. As a result, the turbulence of the airflow enters 

the water. As the secondary jump depth approaches the 

downstream depth, the air bubbles transferred to the 

downstream will disappear. To control the hydraulic jump, 

kinetic energy-consuming structures are used, the most 

common of which is stilling basin (Bakhtiari and 

Kashefipour, 2005). Stilling basin is a part of a flooring 

channel built downstream of dams or valves, and its 

purpose is to form a jump inside the basin. Optimal stilling 

basin design and reducing the operating cost require 

reviewing the jump characteristics and determining the 

effective jump parameters involved in the design of this 

structure. Measures such as sudden cross-sectional 

divergence are among the factors affecting hydraulic jump 

characteristics (Bakhtiari and Kashefipour, 2007). Optimal 

and effective performance of classic stilling basin requires 

proper water depth supply downstream. If for any reason 

(economic cost or drilling problems at the stilling basin), 

the depth required for hydraulic jumping is not possible or 

cost-effective, gradual or sudden flow cross-sectional 

divergence can be a good way to reduce the depth required 

for the jump. At the same time, it reduces the cost of 

building a stilling basin. The first series of jump 

experiments in sudden cross-sectional divergence was 

performed by Shojaeian (2010). Rajaratnam provided 

general equations for the sequential depth ratio that did not 

agree well with Blanger's general equation for the classical 

jump (Rajaratnam, 1967). Rajaratnam studied R-jump in 

sudden cross-sectional divergence in Froude numbers 

between 2 and 9 with an expansion ratio between 0.3 and 

0.9. They concluded that the sequential depth in the initial 

Froude equation escape jump is the expansion ratio 

(Rajaratnam, 1968; Rajaratnam and Subramanya, 1968). 

http://www.science-line.com/index/
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In T-jump laboratory studies, Hager (1992) performed 

experiments in two channels, the first 0.5 m wide and the 

second 1.5 m wide 0.7 m high and 11 m long. They used 

0.9 m long plates in the first channel to create divergence 

with expansion ratios of 0.2, 0.33, 0.5 and 0.67 and in the 

second channel for expansion ratios of 0.33 and 0.5. In this 

study, the channel divergence was symmetric only for the 

0.33 expansion ratio. In the other expansion ratios, the 

divergence channel was asymmetric. This study was also 

conducted in the range of Initial Froude numbers 2.5 to 10 

with an initial depth between 0.13 to 0.6 m. The study 

showed that the value of sequential depth ratio depends on 

the initial Froude number, expansion ratio and toe location 

(Hager, 1992; 1989; 1993).  

Abdulmatin et al. (2008) presented the equation for 

the sequent depth ratio. As mentioned earlier, the modified 

Froude number depends on two parameters, k1 and k2. 

The coefficient k1 is a coefficient that depends on the 

location of the jump, the sequential depth ratio and the 

expansion ratio. But the coefficient k2 depends only on the 

sequential depth ratio and expansion ratio. Therefore, for 

S-jump, since the place of formation of the jump is at the 

point of change of section, i.e., e = 1, then k1 = 0 and the 

modified Froude number will only be a function of the 

coefficient k2. Ferreri and Nasselo examined the hydraulic 

jump in sudden cross-sectional divergence by considering 

thresholds for three expansion ratios (0.33, 0.5, and 0.25), 

five Initial Froude numbers, and five different initial 

depths. They concluded that the jump characteristics 

depend on s, s / y1, Fr1 and B, where s is the height of the 

threshold (Ferreri and Nasello, 2002). In an S-jump study, 

Al-Hamid examined the jump characteristics in Horizontal 

and sloping channels with sudden divergence with three 

expansion ratios of 0.33, 0.5 and 0.67 and three-floor 

slopes of 0.4, 0.25 and zero, in the range of Froude 

numbers 2.7 to 7.5. He performed his experiments on a 

flume 10.5 meters long, 30 meters wide and 45 cm deep. 

He showed that with increasing divergence ratio, the 

sequential depth ratio increases for different Fr1. 

However, under all conditions, it is less than the 

corresponding value in the classic jump (Alhamid, 1994; 

Alhamid, 2004).  

Rezaul Hassan and Abdul Matin (2009) then 

performed experiments at the Hydraulic and River 

Engineering Laboratory of the Department of Water 

Resources Engineering at Dhaka University in 

Bangladesh. They used a horizontal flume of 12.2 m in 

length and 0.3 m in height with three expansion ratios of 

0.5, 0.67 and 0.38 with an Initial Froude number of 1.33-

3.48, an aperture of 3.6-7.3 cm, and a flow rate of 5-19.6 l 

/ s. They concluded that the parameter K2 is dependent on 

the two parameters B and Fr1 and decreases with 

increasing expansion ratio. Also, for an expansion ratio 

greater than 0.67, this parameter will be independent of the 

Initial Froude number Rezaul Hassan and Abdul Matin 

(2009). 

This study was aimed to simulate the use of the neural 

network and FLOW-3D numerical model, a three-

dimensional (3D) model for fluid simulation, the effect of 

sudden divergence stilling basin on characteristics. 

 

MATERIAL AND METHODS 

 

Dimensional analysis 

Hager and Bremen (1993) by studying the T-jump, at 

expansion ratios of 0.2, 0.33, 0.5, and 0.67 and initial 

Froude numbers 2.5 to 10, measured the jump length equal 

to x1 + xj and the following equation Presented by: 
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The above equation for S-jump, whose jump length 

contains only xj, will be as follows: 
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For T-jump, the jump length is always longer than the 

classic jump length. This difference will be more 

significant with decreasing expansion ratio and proximity 

of the jump toe to the cross-section change, i.e., the 

tendency of the jump from type T to type S (Hager and 

Bremen, 1993). 

According to previous studies in the field of the jump, 

sudden divergent stilling basin has the greatest effect on 

energy dissipation. To investigate the effect of divergence 

shape on hydraulic jump characteristics, this phenomenon 

was simulated using neural network and Flow-3D 

software. It was then calibrated and compared with the 

physical model located in the hydraulic laboratory of the 

Faculty of Water Engineering, Shahid Chamran University 

of Ahvaz. Figure 1 shows the laboratory model image. 

This model includes the main part of the flume with a 

length of 12 meters, width of 80 cm and height of 70 cm, 

sliding valve at the inlet section, downstream sliding valve 

that regulates the jump toe, pressure supply tank, flow 

stiller, water outlet guide channel and water supply tank 

(Kobra Nisi and Dezfuli, 2014). 
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Figure 1. Laboratory model image. 

 

To create a sudden divergence in the flume cross-

section, the channel can be divergent symmetrically 

(narrowing on both sides of the channel) or 

asymmetrically (narrowing on one side of the channel). 

Therefore, the experiments were performed on a flume 12 

cm long, 0.8 m wide, and 0.7 m high made of glass and 

Plexiglas. The sliding valve was used to form a jump and 

create a supercritical flow. To prevent the contraction of 

the outlet flow lines from the valve and also that the initial 

depth of the jump is equal to the expansion of the valve, 

the upstream shape of the valve has been semicircular. 

Another sliding valve was used downstream of the flume 

to stabilize the jump position (Nisi and Shafaei Bajestan, 

2013). 

 

An introduction to Flow-3D software 

Flow-3D software is multifaceted software that adapts 

to complex flow conditions in 2D and 3D modeling. This 

software is dedicated to computational fluid dynamics 

(CFD) and is provided by Flow Science. The method of 

solving equations in this software is based on the finite 

volume method. Mathematical models are one of the most 

powerful tools in solving complex equations related to 

fluid mechanics. Today, with the increasing speed of 

computers, the use of these models has expanded 

significantly. One of the advantages of mathematical 

models over physical models is that they are less 

expensive. In comparison, various changes, such as 

structural geometry changes, are easily possible in these 

models. The use of such software due to the high graphic 

ability and providing three-dimensional flow results 

according to any geometric shape of the hydraulic 

structure can provide much information to the designer to 

optimize the structure's geometric shape. It also causes 

fewer changes in the hydraulic model and study time, or 

even in some cases, replaces the construction and conduct 

of hydraulic studies (Nisi and Shafaei Bajestan, 2013). 

To model the desired flume, a 3D view of the flume 

and the catchment was designed in AutoCAD software 

and saved in st l format, as shown in Figure 2. 

 

 
Figure 2. A 3D model designed by AutoCAD software. 
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A large number of mesh cells were used to model the 

model. Since increasing the number of mesh cells directly 

affects the time of each software run, we tried to achieve a 

certain limit on the size and number of mesh cells to be 

considered both accurately and simultaneously. These 

mesh divisions do not affect flow lines and are used only 

for meshing. The meshes will also vary in different 

directions of the coordinate axis based on the blocks' 

length. After determining the number of meshes, Flow-3D 

software allows the user to determine the correctness of 

the proportion of their number in all three directions X, Y, 

Z by two parameters maximum adjacent cell size ratio and 

maximum Aspect Ratios in different directions. These two 

parameters are located in the Info section of the Meshing 

section. The Flow 3D model is shown in Figure 3. 

 

 
Figure 3. Flow -3D model. 

 

In this research, after performing initial configurations 

and networking and determining the boundary conditions, 

the software was run. After calibrating the software, we 

performed the next runs. After comparison, the boundary 

conditions were determined as follows: Input border: 

Volume Flow Rate, Output border: Out Flow; Side 

borders: wall; Floor border: wall; Upper limit: Specified 

Pressure using the "use fluid fraction" option. 

The simulation with the Flow-3D mathematical model 

includes two discharges of 27.4 and 41.4 l/s and three 

types of curved divergence, gradual and divergence. A 

total of 6 scenarios are shown in Table 1. 

 

Table 1. Flow-3D simulation variables. 

Total Divergence (3 variables) Flow rate (2 variables) 

Six 

scenarios 

Curved, gradual and 

divergent 
27.4 and 41.4 l/s 

 

Model calibration 

To calibrate the model, experiments were performed 

using observational data in different modes of roughness 

coefficient and turbulence models. The details of the tests 

are as follows: 

Manning roughness coefficient (n) values: 0.02, 

0.025, 0.03, 0.035 and 0.04 

Important and common turbulence models used in this 

software :(Laminar, Prandtl Mixing Length Model, K-

Epsilon Model) and inlet flow: 27.4 l/s 

Calibration experiments were performed on curved 

divergence. Each experiment was performed with initial 

data. In each experiment, water height and jump length in 

the software were calculated from the obtained results. 

After importing the results into Excel software, they were 

compared with the observed data. In each experiment, the 

amount of error was calculated. According to the 

calibration experiments results, the lowest error in the 

experiments was obtained using the Manning roughness 

coefficient 0.035 and Prandtl Mixing Length Mode model. 

The error rate, in this case, is -1.45%. Now, using the 

values obtained in the calibration process, the main tests 

were performed. 

 

Artificial neural network (ANN) 

During the last decade, with the advent of intelligent 

processing systems such as ANNs, genetic algorithm 

(GA), fuzzy logic, chaos theory, etc., the discussion of 

black-box models has entered a new field. The high 

capability of these models in understanding the intrinsic 

relationships between data, each inspired by nature and 

biological systems, is the reason for the high volume of 

current relevant research around the world (ASCE II, 

2000). Each of these models alone has shown its ability to 

simulate complex processes. There are many areas of 

research for them. Nevertheless, combining these types of 

intelligent processing systems and presenting a hybrid 

model is one of the completely new issues at the 

international level and can summarize the positive features 

of these methods in one model. The extraordinary power 

of ANNs in learning and generalizing and establishing a 

nonlinear relationship between input and output spaces, as 

well as its extensive and distributed structure, has made 

this model always a key element in intelligent hybrid 

models. On the other hand, GA's potential ability to solve 

optimization problems creates the belief that a very robust 

information processing model can identify parameters 

affecting the phenomenon and eliminate ineffective 

parameters can be achieved by combining it with ANN. 

Such a model is called the artificial neural network (GA) 

model or the evolutionary neural network model. Figure 4 

shows the functional simulation of artificial and natural 

neural networks. 
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Figure 4. Artificial and natural neural network.  

 

In this research, after entering the information in the 

neural network and training the program, the information 

was processed, the results of which will be discussed in 

the results section. The type of input and output 

information is shown in Figure 5. 
 

 
Figure 5. Artificial neural network model used in this 

study. 

 

MATERIAL AND METHOD 
 

To investigate the effect of divergence shape on hydraulic 

jump characteristics, this phenomenon was simulated 

using neural network and Flow-3D software. It was 

calibrated and compared with the physical model. Figure 6 

shows the research method. 
 

 
Figure 6. Research methodology. 

RESULTS 

 

The obtained results include the results of the flow in two 

forms: graphic and table. The graphical results include the 

basin view and how the desired hydraulic parameters, such 

as velocity, are distributed in the computational model. 

 

 

 
Figure 7. Graphical results of velocity in curved 

divergence. 

 

As can be seen from Figure 7, the results of the speed 

in the hydraulic jump can be seen, as well as the length of 

the jump. The 3D numerical simulation outputs performed 

for different expansions are in Table 2.  

According to the diagram in Figures 8 and 9, it can be 

seen that the expansion of the secondary jump depth from 

27.8 l/s increased from 14.8 to 15.1 cm and from 41.4 l/s 

from 18.9 to 19.4 cm by changing the expansion from 

gradual to curved. The hydraulic jump length in Flow rate 

decreased from 27.8 l/s from 134 to 123 cm and in Flow 

rate 41.4 l/s from 189 to 174 cm. The change of expansion 

from gradual to sudden curved of the secondary jump 

depth has increased the energy drop, which has increased 

the secondary jump depth and decreased the hydraulic 

jump length. 

 

Table 2. 3D simulation results. 

Jump length 

(cm) 

Post-jump 

depth (cm) 

Flow rate 

(L/s) 
Type 

131 14.9 27.8 
Curved opening 

185 19.1 41.4 

134 14.8 27.8 
Gradual opening 

189 18.9 41.4 

123 15.1 27.8 
Sudden opening 

174 19.4 41.4 
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 Figure 8. Comparison diagram of secondary jump length 

and depth at a flow rate of 27.4 l/s. 
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Figure 9. Graph of secondary jump length and depth at a 

flow rate of 41.4 l/s. 

 

 

Table 3. Results of jump length in three-dimensional 

simulation.  

N. Opening shape Flow rate L/y1 

1 Curved 27.8 26.80 

2 Gradual 27.8 26.20 

3 Sudden 27.8 24.60 

4 Curved 41.4 37.80 

5 Gradual 41.4 37.00 

6 Sudden 41.4 34.80 

 

 
Figure 10. Survey diagram (L/Y1) in different models. 

 

According to Table 3 and Figure 10, it can be well 

seen that at a flow rate of 27.8, the ratio of (L/y1) decreased 

from 26.8 to 24.6 by gradually and then abruptly changing 

from expansion. Also, in Flow rate 41.4, the ratio (L/y1) 

decreased from 37.8 to 34.8 with the gradual and then 

abrupt transformation of the expansion. The efficiency of 

classic stilling basins is 53.3%, and sudden stilling basins 

divergent is 70.7% according to Abdolmatin 2009 research. 

The results of mathematical modeling showed 71% 

efficiency for all three expansion forms. Depth after 

jumping in the stilling basins divergent modeled in Flow 

rate 27.8 and 41.4 l/s is 12 and 25% less than the classic 

basins, respectively. % Reduction of jump length compared 

to the classic mode in the parabolic, gradual, and sudden 

divergent stilling basins are 25.9%, 27.5%, and 31.8%, 

respectively. The L/Y1 dimensional length parameter was 

investigated for economic efficiency. It was found that 

sudden divergent stilling basin is more optimal due to 

shorter jump length. 

Below, the FLOW-3D numerical model and the 

physical model are compared. The results are listed in Table 

4. This comparison includes the average length and depth of 

the second jump in three discharges of 27.8, 36.2 and 41.4 

l/s. The rest of the conditions are the same.  

 

Table 4. Reviewing the results of the physical model and the FLOW-3D numerical model. 

L 

(cm) 

Y2 

(CM) 
FR1 

Y 

(CM) 

Opening 

Ratio 
RE  Test Type  Q(lit/s) 

Test 

Number  
No 

121 14.9 4.27 3 0.5 66609 Experimental model  
27.8 

1 1 

123 15.1 4.27 3 0.5 66609 Numerical Simulation  2 2 

152 17.6 5.56 3 0.5 90121 Experimental model  
36.2 

3 3 

156 17.8 5.56 3 0.5 90121 Numerical Simulation  4 4 

169 19.1 6.36 3 0.5 98154 Experimental model  
41.4 

5 5 

174 19.4 6.36 3 0.5 98154 Numerical Simulation  6 6 
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According to Table 4, it can be seen that the 

simulation results with the FLOW-3D numerical model 

are close to the physical model. In the secondary depth, we 

see a difference of 1.36% and the jump 2.48% difference, 

which shows the mathematical model's high accuracy. 

4.1 Neural network simulation results 

Due to the high sensitivity of neural networks and 

fuzzy-neural system to the type of information used and 

the correlation of network inputs and subsequent outputs, 

apart from discussing the type of network and its use as a 

tool to generate artificial current, one must have a correct 

view of information, have access to and how to organize 

them for training and use of the network. Any kind of 

information with different time intervals does not 

necessarily lead us to the desired goal. 

To calibrate the network, various excitation functions 

in the hidden layer and the output layer were used. Finally, 

by comparing the square of the squares, the errors in the 

test phase were determined. The linear axon function 

creates the lowest MSE in the network. 

We used five different training algorithms in the 

hidden and output layers. By comparing the squares of the 

errors in the test phase, it was determined that the STEP 

algorithm creates the lowest amount of MSE in the 

network. 

Seven different networks were created to calibrate the 

network and determine the optimal number of neurons in 

the hidden layer. Then the square of the errors was 

compared in the test phase. It was found that with five 

neurons in the hidden layer, the lowest amount of MSE is 

obtained. The calibration results are presented in Table 5. 

Table 6 summarizes the calibration results and the optimal 

neural network model of the research. 

According to the problem and goals that we will have 

from the creation of the network, the type of statistics in 

terms of measurement accuracy and standard deviation 

values that can be discussed in the range can be discussed 

in issues related to hydraulics and hydrology. Overall, the 

accuracy of the test data will greatly affect the results. As 

mentioned, the incompleteness of a parameter or the out-

of-bounds of one or more parameters is not effective or 

has little effect on the process of the artificial neural 

network, provided that the amount of data is multiplied. 

One of the properties of these networks is that with any 

data that the user gives them, provided that it is defined 

and specified, a result is obtained. The important point is 

that the occurrence of error or failure of out-of-frame 

results will cause it to be repeated many times in the 

process of the logical conclusion of the artificial neural 

network and will affect the reliability of the results. To 

create and build training patterns, the data arranged in the 

preprocessing stage were put together. Optimal artificial 

neural network means a network with high accuracy to 

produce outputs with high correlation data and squared 

squares with less error. In the present study, 70% of the 

laboratory data were used as training data for network 

training, 15% for testing and 15% for network validation. 

Input data matrix A matrix with dimensions of 158 * 4 

includes information about the initial jump depth, flow 

rate, Froude number at the location of the initial jump 

depth and the ratio of the width of the primary section to 

the secondary section. Objective data matrix A 158*2 

matrix contains information about the secondary jump 

depth and jump length. 

 

Table 5. Calibration of the number of neurons in the 

network. 

Number 

of 

Neuron 

MSE  

Training 

MSE Cross 

Validation 

MSE test  

(10e-3) 

1 0.132349423 0.181271728 93.11016788 

2 0.05181275 0.072591356 8.469387315 

3 0.019127996 0.03875391 9.01105544 

4 0.056743949 0.082149969 11.63686939 

5 0.055047935 0.078821795 6.508071849 

6 0.051139935 0.081444374 33.71110049 

7 0.0193921156 0.090301158 110.1410887 

 
Table 6. Summary of neural network calibration results. 

 MLP Model 

Hidden Layer No. 1 

Learning Algorithm 
Hidden layer Output Layer 

Step Step 

Transfer Function LinearTanhAxon LinearTanhAxon 

Best PE in Hiden 

Layer 
5 

Best Epoch 764 

 

 
Figure 11. Graph of determining the number of repetitions 

of the appropriate training for the MLP model. 
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CONCLUSION 

 

The optimized neural network model provides the least 

amount of output error. The above model can predict the 

jump length and secondary jump depth with MSE error of 

7.0702e -7 and correlation coefficient of 0.093302. The 

values of the mentioned verification statistical indices 

show that the neural network can well estimate the 

selected output parameters (secondary length and depth of 

jump). 

The results of the neural network are very close to the 

physical model. 3D simulation using Flow-3D software 

simulates a hydraulic jump with an average error of 

2.41%. 

The efficiency of divergent stilling basins was 

calculated to be 71%, which is higher than the classic 

stilling basins with an efficiency of 53.3%. 

Depth after the jump in divergent stilling basins 

modeled at 27.8 and 41.4 l/s is 12 and 25% less than 

classic basins, respectively. 

The% reduction in jump length compared to the 

classic mode in the divergent stilling basins parabolic is 

25.9%, gradual 27.5% and sudden 31.8%. 

Sudden divergent stilling basin has the best 

performance in terms of hydraulic flow parameters 

compared to other forms of expansion. The dimensionless 

scouring length parameter was investigated to evaluate 

economic optimality. It was found that sudden divergent 

stilling basin is more economically efficient due to shorter 

jump length. 

If the effective input and output parameters are 

recorded during operation and the maintenance period, the 

neural network model can be prepared for the stilling 

basin. This model, with very low error, can help predict 

critical situations. This model can also be used with great 

precision in the design of similar basins. If the input data 

is planned correctly, the neural network model range can 

be increased. 

3D numerical simulation using Flow-3D software 

with acceptable error for engineering design, all important 

output parameters in all control volume (speed changes in 

all three directions, the pressure at each point, the energy 

level at any point of control volume Etc.) shows. This is an 

important advantage of numerical simulation over the 

neural network model. Also, the cost of numerical 

simulation is much lower than physical modeling. 

Therefore, it is a more suitable option for designing 

numerical simulation engineering. Briefly for accuracy 

and application of numerical simulation by FLOW 3D 

software, high-efficiency stilling divergent basins, 

reduction of secondary depth and jump length in divergent 

stilling basins, longer jump reduction in sudden divergent 

stilling basins than gradual and curved ones and accuracy 

and application of neural network in divergent stilling 

basins calculations. 
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