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ABSTRACT: One of the new methods in the analysis of cracked structures is extended Finite Element 

Method (XFEM). In this method, unlike the conventional finite element method to calculate the integral of 

stiffness matrix using Gauss quadrature rule, accuracy of stiffness matrix of cracked elements is reduced. 

This article builds on the relationship between errors in the calculations if one uses different methods to 

calculate the stiffness matrix integral. The three methods of integration used and presented here are 

trapezoidal rule integration, Gauss quadrature integration and sub element rule integration. The average 

stiffness matrix error and maximum stiffness matrix errors were considered as the assessing criteria. L2-

norm and energy norm criteria were also used. Finally accuracy of stress intensity factor (SIF) determined 

by XFEM were compared with different integration rules conventionally used in the literature. 

Keywords: Gauss Quadrature Integration, SIF ,Stiffness Matrix, Sub Element Rule Integration, Trapezoidal 

Rule Integration, XFEM 
 

INTRODUCTION  
 

 Normally engineering problems could be 

encountered with dilemma such as discontinuities, 

singularities, high gradients or other non-smooth 

properties. In solid mechanics, such problems may be 

due to cracks, shear bands, dislocations, inclusions and 

voids (Fries and Belytschko, 2010). 

In the present study, emphasize has been 

addressed to cracks. In dealing with this type of problem, 

two methods have been introduced in the literature. One 

strategy is to use polynomial approximation, where a 

mesh concur the discontinuities, followed by refining the 

mesh in the vicinity of regions with singularities and 

high stress gradients. This may be regarded as a 

drawback of Finite Element Method where remeshing is 

required (Belytschko et al., 2000; Zienkiewicz and 

Taylor, 2000).  

In the second strategy the singular or 

discontinuous displacement field within a finite element 

is simulated by a special set of enriched shape functions 

that allow for accurate approximation of the 

displacement field (Moës et al., 1999). The main 

advantage of this method is that it does not require any 

remeshing in the process of crack propagation. By 

advancement of the crack tip location or any change in 

its path due to loading conditions, the method 

automatically determines the elements around the crack 

path/tip and generates necessary enrichment functions 

for the associated finite elements or nodal points 

accordingly (Mohammadi, 2008). 

We focus on mesh based enrichment methods 

which realize the enrichment extrinsically by the 

partition of unity concept. The basic ideas and the 

mathematical foundation of the Partition of Unity Finite 

Element Method (PUFEM) were discussed by Melenk 

and Babuska (1996) and Duarte and Oden (1996). Later 

Belytschko and Black (1999) presented a minimal 

remeshing finite element method by adding 

discontinuous enrichment functions to the finite element 

approximation to account for the presence of a crack. 

The method was then improved by Moës et al. (1999) 

and Dolbow (1999) where it was called the eXtended 

Finite Element Method (XFEM). This methodology 

allowed for the entire crack to be represented 

independently of the mesh and constructed the enriched 

approximation from the interaction of the crack 

geometry with the mesh. More contributions from 

Dolbow et al. (2000a,b, 2001), Daux et al. (2000) and 

Sukumar et al. (2000) extended the method for three-

dimensional crack modeling and arbitrary branched and 

intersecting cracks.  

 

MATERIALS AND METHODS  

 

Extended Finite Element Method (XFEM) 

In contrast to the classical finite element method 

where crack surfaces are explicitly meshed and must 

conform to mesh boundaries, in XFEM, inter-element 

crack discontinuities are modeled entirely independent of 

the underlying mesh. Thus, cracks are represented via 

the displacement approximation enriching the classical 

displacement based approximation by a function that is 

discontinuous across the crack permits crack modeling to 

be realized. The enriched displacement field in the X-
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FEM is given by (Motamedi and Mohammadi, 2010; 

Pommier et al., 2011): 
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where Ni(x) is the polynomial basis function of 

node i, di are the classical degrees of freedom associated 

with node i. Coefficients bj are the enriched degrees of 

freedom associated with node j and the Heaviside 

function H(x) denotes discontinuity across the crack 

interior. The function H(x) is +1 to the left of the crack 

and -1 to its right. c
l
i,1 and c

l
i,2 are the enriched degrees of 

freedom associated with nodes k1 and k2.  I is the set of 

all nodes in the mesh, the set K1and K2 are the sets of 

nodes to be enriched in order to model the crack tips 1 

and 2, respectively and J is the set of nodes whose basis 

function supports are cut by the crack interior and do not 

belong to set K. Figure 1 illustrates the Node selection 

for enrichment; the nodes marked by squares are 

enriched by crack-tip functions and the circled ones are 

enriched by the Heaviside function (Dolbow and 

Nadeau, 2002). 

 

 
Figure 1. Node selection for enrichment (Dolbow and 

Nadeau, 2002) 

 

The near-tip enrichment functions F1
l
(x) and 

F2
l
(x) are defined as (Bayesteh and Mohammadi, 2013): 

 

  

 

, 1, 2, 3, 4

sin sin , cos cos ,
2 2

sin sin sin sin , cos cos( ) sin sin( )
2 2

l
F x l

r r

r r

 

 
 

 

    
    

   
 
 

  
  

(2) 

where r and θ as shown in Figure 2, are local 

crack-tip polar coordinates of point x.  

  
Figure 2. Polar coordinates at the crack tip 

(Mohammadi, 2008) 

 

The discrete system of linear equations in the 

XFEM in global form can be written as (Sukumar and 

Prévost, 2003): 

h
Ku f   (3) 

where K is the stiffness matrix, u
h
 is the vector of 

nodal degrees of freedom for both classical and enriched 

ones, and f is the vector of external force. The global 

matrix and vectors are calculated by assembling matrices 

and vectors of each element. K and f for each element 

are defined as (Asadpoure et al., 2006): 
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where Ω
e
 is an element, Ωt

h
  is an element with a 

crack lying along its edges, ∂Ω denotes the boundary of 

the domain  Ω , ¯t is the traction and b is the body force. 

In Eq. (4), B is the matrix of shape function derivatives 

(Mohammadi, 2008): 
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Numerical Integration 

Consider the situation where the local enrichment 

functions have jumps or kinks within elements. Standard 

Gauss quadrature in the weak form as frequently used in 

the classical FEM requires smoothness of the integrands. 

In the presence of jumps or kinks the accuracy of Gauss 

quadrature and other methods that assume smoothness is 

drastically decreased. Therefore, for discontinuous 

enrichments, special procedures are required for the 

quadrature of the weak form (Fries and Belytschko, 

2010). 

Because the ordinary Gauss rules do not 

accurately calculate the integration of enrichment 

functions in elements cut by a crack, Dolbow (1999) 

proposed two methods to overcome this numerical 

difficulty. The first method is to subdivide the element at 

both sides of the crack into sub-triangles whose edges 

are adapted to crack faces. The second one is to 

subdivide the element into sub-quads. Both methods are 

illustrated in Figure 3. 

 
Figure 3. Methods 1 and 2 as (a) and (b) for partitioning 

the cracked element (Mohammadi, 2008) 

 

In first method, for integration purposes, a 

decomposition of the elements into sub-elements that 

align with the discontinuity has been proposed in the 

early works on the XFEM, e.g. by Moës et al. (1999) and 

Sukumar et al. (2000). The sub-elements do not have to 

be conforming and no new unknowns are created from 

this decomposition (Fries and Belytschko, 2010). 

In second method, those elements cut by the crack 

are divided into a grid of quadrilaterals, denoted as sub-

quads, as shown in Figure 3. A trapezoidal rule can then 

be used in each sub-quad for integration purposes 

(Dolbow, 1999). 

Due to high gradients near the singularity, a 

concentration of integration points in the vicinity of the 

singularity improves the results significantly. This can be 

achieved by using polar integration approaches as 

described in Laborde et al. (2005) and Béchet et al. 

(2005). Laborde et al. (2005) have shown that this 

approach eliminates the singular term from the 

quadrature. The idea is to decompose the element 

containing the crack tip into triangles, so that each 

triangle has one node at the singularity, known as 

singularity node. Tensor-product type Gauss points in a 

quadrilateral reference element are mapped into each 

triangle such that two nodes of the quadrilateral coincide 

at the singularity node of each triangle. The procedure is 

depicted in Figure 4. This approach is well suited for 

point singularities. 

 
Figure 4. Integration points in an element containing a 

singularity (Fries and Belytschko, 2010) 

 

Special integration points and weights are used 

which capture the singularity either at a node or along an 

edge of a sub-element resulting from a decomposition 

(Fries and Belytschko, 2010). 

Standard Gauss points are projected from a 

quadrilateral element into a triangular element. The 

triangular element is then projected into the element 

containing the singularity such that the integration points 

are concentrated at the singularity (Fries and Belytschko, 

2010). 

Since the accuracy of the analysis depends on the 

precision of computed stiffness matrices for the 

members and the structure, in the present work therefore 

the effect of number of gauss points and the integration 

method were studied on the errors built. Thus the 

following criteria were considered to obtain the 

computed errors.  

 

Errors Criteria 

Stiffness matrix error: To compute the error in 

the stiffness matrix, we assumed that trapezoidal 

integration over the stiffness matrix may result a near 

exact solution when resembled with a 500×500 network 

of Gauss points. The two criteria for obtaining stiffness 

matrix error are defined as: 
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where Emax and Eave denote maximum and average 

error on the elements stiffness matrices.  Kij
500

 is the ijth 

element of stiffness matrix accounting for the trapezoidal 

integration with a 500×500 network. Kij is the ijth 

element of stiffness matrix, n is the total degrees of 

freedom of the structure and m is the non-zero elements 

of stiffness matrix. 

 

L2-Norm Error Criterion: To compare the rate 

of produced element displacement error with the actual 

amount, L2 formula is used where (Fries and Belytschko, 

2007): 
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Here, uex and vex denote actual horizontal and 

vertical displacements, while uap and vap are the 

corresponding computed values, respectively. uex and vex 

may be computed according to some arbitrary values for 

stress construction values, using Equation 9, stated as 

(Anderson, 1985): 
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μ is being the shear modulus of elasticity. κ, as the 

Kolossov's constant, is obtained using either κ=(3-

ν)/(1+ν)  or κ=3-4ν formulae for the case of plane stress 

or plane strain, respectively. KI and KII are Stress 

Intensity Factors (SIFs) for modes I and II, respectively. 

To determine vap and uap, via selecting an arbitrary 

stress concentration coefficient, and using Equation 9, 

nodal displacements for each element will be first found. 

XFEM will then be employed to do the analysis. 

Integral computation of Equation 8 will be carried 

out using Gauss Quadrature, regarding a 20×20 network 

of sampling points. 

 

Energy norm Criterion: Rate of absorbed 

energy error by each element “E” as in Equation 10, 

meaning to survey stress and strain error, is 

accomplished using energy norm criterion (Fries and 

Belytschko, 2007). Therefore: 
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where σex and εex are the actual values for the 

stress and strain vectors. σap and εap are the computed 

values for the stress and strain vectors. The actual σex 

values are determined through equation 11 and via using 

a selected coefficient for the stress intensity factor. 

Values for εex are however found using the relation 

ε=D
T
.σ (Anderson, 1985). 
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In order to determine values for σap and εap 

considering stress intensity factors is chosen and the 

amount of nodal elements displacements are calculated 

by equation 9 and then analysis is executed by means of 

XFEM method. 

 

RESULTS AND DISCUSSION  

 

To investigate on the accuracy of different 

integration techniques, eight different types of elements, 

as shown in Figure 5 will be inspected. Details of 

investigations carried out in each element type are 

described in the following sections. 

 

 
Figure 5. Different element types 

 

Element type 1 

Having placed the crack's tip inside this element, 

the crack tip enrichment was executed for all the 

corresponding nodes of the element. Integration was then 

carried out on the element, using three different 

integration rules as follows: 

 

Trapezoidal rule integration: In this rule 

numbers of sampling points considered were within a 

2*2 to 200*200 networks. It is worth to note that odd 

numbers of points were not considered since some of 

these points would lay on the discontinuity boundary and 

could simply cause problems during the procedure. The 

trend of average error of stiffness matrix with respect to 

the sub-quads, related to this rule, is shown in Figure 6. 

 
 

Figure 6 (a). Average error of stiffness matrix by 

Trapezoidal rule integration, related to Element's type 1 
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Figure 6 (b). Maximum error of stiffness matrix by 

Trapezoidal rule integration, related to Element's type 1 

 

There, we observe that as sampling points 

increase error change gradient decreases. Considering a 

81*81 network which means executing calculations for 

6561 points, average error of stiffness matrix is found 

less than 1%. However maximum error of stiffness 

matrix never becomes less than 1%. Number of required 

sampling points to achieve a 2, 5 and 10 percent errors 

are listed in Table 1. 

 

Gauss Quadrature integration: Here, the 

number of sampling points considered were within a 

range of 2*2 to 20*20 networks. The corresponding 

error history is shown in Figure 7. 

 
Figure 7(a). Average error of stiffness matrix by Gauss 

Quadrature integration, related to Element's type 1 

 
Figure 7(b). Maximum error of stiffness matrix by 

Gauss Quadrature integration, related to Element's type 1 

Considering these diagrams we observe that as 

sampling points increase, error change gradient 

decreases. However the reduction rate is greater 

compared to trapezoidal rule integration. The 

disturbance created in these diagrams is due to the fact 

that when odd numbers sampling points are chosen a 

number of these points get placed on discontinuity 

boundary and when solving the calculations numerically 

they face problems. By considering a 20*20 network 

which means executing 400 calculations, the average 

error in stiffness matrix is equal to 8.25%. But maximum 

error in stiffness matrix is very high. 
 

Sub elements rule integration: Here the element 

is divided into 6 sub elements as shown in Figure 8 and 

integration is executed in each sub element. Sampling 

points in each sub element were considered within  a 

range of 2*2 to 20*20 networks. The convergence 

history of error corresponding to the stiffness matrix is 

shown in Figure 9. 

 
Figure 8. Sub elements of element type 1 

 

 
Figure 9(a). Average error of stiffness matrix by Sub 

elements rule integration, related to Element's type 1 

 
Figure 9(b). Maximum error of stiffness matrix by Sub 

elements rule integration Element's type 1 
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Considering these diagrams we observe that as the 

number of sampling points increases the error decreases. 

But the gradient decrease is more announced compared 

to trapezoidal and Gauss Quadrature rules integrations. 

Average error in stiffness matrix for a 5*5 network in 

each sub element, was found less than 1%. 

 

Table 1. Required minimum number of sampling points 

leading to different errors for element type 1 

Type of integration 

Trape-

zoidal 

rule 

Gauss 

Quad-

rature 

rule 

Sub 

elemen-

ts rule 

Required number of sampling 

points to achieve a less than 2% 
average error 

44*44 --- 6*4*4 

Required number of sampling 

points to achieve a less than 2% 
maximum error 

--- --- --- 

Required number of sampling 

points to achieve a less than 5% 
average error 

19*19 --- 6*3*3 

Required number of sampling 

points to achieve a less than 5% 
maximum error 

--- --- --- 

Required number of sampling 

points to achieve a less than 
10% average error 

11*11 18*18 6*3*3 

Required number of sampling 

points to achieve a less than 
10% maximum error 

--- --- --- 

 

Considering the high maximum error of stiffness 

matrix, L2–norm and Energy norm Criteria were also 

considered for this element type. The problem was 

solved once by the assumption of KII=0 & KI= 1 and the 

other time by the assumption of KII=1 & KI= 0. The 

results obtained are displayed in Figure 10.  

As is evident from Figure 10 it is clear that error 

reduction becomes almost fixed to a very small value 

while increasing number of sampling points from 3*3 

networks in each sub element to 20*20. Therefore we 

notice that if we use the sub element integration 

considering a 5*5 network in each sub element by 

executing minimum calculations we can reach an 

acceptable accuracy in calculations related to stiffness 

matrix. 

Note that in determining all error discrepancies, 

different element sizes were studied and it was observed 

that elements size is not effective in the magnitude of the 

error. 

 
Figure 10(a). Convergence history of L2 norm with 

number of Gauss points for element type 1 by Sub 

elements rule integration 

 
Figure 10(b). Convergence in the Energy norm for 

element type 1 by Sub elements rule integration 

 

Elements type 2, 3 and 4 

As declared in Figure 5, in these elements crack 

tip enrichment is executed in a number of nodes. In order 

to calculate errors related to stiffness matrix integration 

were executed by means of trapezoidal and Gauss 

Quadrature rules. Stiffness matrix errors are shown in 

Figures 11 and 12. 

 

 
Figure 11(a). Average error of stiffness matrix by 

Trapezoidal rule integration, related to Element's type 2, 

3 and 4 

 

 
Figure 11(b). Maximum error of stiffness matrix by 

Trapezoidal rule integration, related to Element's type 2, 

3 and 4 
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Figure 12(a). Average error of stiffness matrix by Gauss 

Quadrature integration, related to Element's type 2, 3 and 

4 

 

 
Figure 12(b). Maximum error of stiffness matrix by 

Gauss Quadrature integration, related to Element's type 

2, 3 and 4 

 

Tables 2, 3 and 4 show required number of 

sampling points using different integration rules leading 

to 1, 2, 5 and 10 percent errors for element types 2, 3 and 

4, respectively. 

 

Table 2. Required minimum sampling points number to 

achieve different errors in element type 2 

Type of integration 

Trapezo

-idal 

rule 

Gauss 

Quadr

a-ture 

rule 

Required number of sampling points to 
achieve a less than 1% average error 

20*20 5*5 

Required number of sampling points to 

achieve a less than 1% maximum error 
153*153 7*7 

Required number of sampling points to 

achieve a less than 2% average error 
14*14 4*4 

Required number of sampling points to 
achieve a less than 2% maximum error 

111*111 6*6 

Required number of sampling points to 

achieve a less than 5% average error 
9*9 4*4 

Required number of sampling points to 

achieve a less than 5% maximum error 
71*71 6*6 

Required number of sampling points to 

achieve a less than 10% average error 
6*6 3*3 

Required number of sampling points to 

achieve a less than 10% maximum error 
50*50 5*5 

Table 3. Required minimum sampling points number to 

achieve a different error in element type 3 

Type of integration 
Trapezo-

idal rule 

Gauss 

Quadra-

ture rule 

Required number of sampling points to 
achieve a less than 1% average error 

21*21 4*4 

Required number of sampling points to 
achieve a less than 1% maximum error 

185*185 5*5 

Required number of sampling points to 

achieve a less than 2% average error 
15*15 4*4 

Required number of sampling points to 

achieve a less than 2% maximum error 
136*136 5*5 

Required number of sampling points to 

achieve a less than 5% average error 
9*9 3*3 

Required number of sampling points to 

achieve a less than 5% maximum error 
87*87 5*5 

Required number of sampling points to 

achieve a less than 10% average error 
7*7 3*3 

Required number of sampling points to 
achieve a less than 10% maximum error 

62*62 4*4 

 

Table 4. Required minimum number of sampling points 

to achieve different errors in element type 4 

Type of integration 
Trapezo-

idal rule 

Gauss 

Quadra-

ture rule 

Required number of sampling points to 

achieve a less than 1% average error 
14*14 4*4 

Required number of sampling points to 

achieve a less than 1% maximum error 
53*53 6*6 

Required number of sampling points to 

achieve a less than 2% average error 
9*9 4*4 

Required number of sampling points to 

achieve a less than 2% maximum error 
37*37 5*5 

Required number of sampling points to 

achieve a less than 5% average error 
6*6 3*3 

Required number of sampling points to 

achieve a less than 5% maximum error 
23*23 5*5 

Required number of sampling points to 
achieve a less than 10% average error 

5*5 3*3 

Required number of sampling points to 
achieve a less than 10% maximum error 

16*16 5*5 

 

Since average error in element type 2 is less than 

1% using a 4*4 network integrated by Gauss Quadrature 

rule and also considering that maximum error in stiffness 

matrix is not very effective on calculations, one may say 

that in order to execute minimum such calculations using 

a 4*4 network integrated by Gauss Quadrature rule, a 

desired accuracy in calculating stiffness matrix of 

elements is achieved, while the crack tip enrichment is 

also executed. 

It should be stated that in determining all error 

criteria, different element sizes were studied and we 

observed that element's size has no effect on error 

quantity. 

 

Element type 5 

As in Figure 5, this type of element is divided into 

two parts by the crack and the crack tip enrichment 

together with discontinuity enrichment are executed in 

the corresponding nodes. In order to calculate errors 

related to stiffness matrix the integration was done by 

trapezoidal, Gauss Quadrature and sub element rules. 
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When using sub element rule, as shown in Figure 13, the 

element was divided into 2 sub elements and integration 

was carried out in each sub element. A range of 2*2 to 

20*20 networks were considered as sampling points in 

each sub element. Accordingly, the computed stiffness 

matrix errors are shown in Figures 14, 15 and 16. 

 

 
Figure 13. Sub elements of element type 5 and 7 

 

 
Figure 14(a). Average error of stiffness matrix by 

Trapezoidal rule integration, related to Element's type 5 

 

 
Figure 14(b). Maximum error of stiffness matrix by 

Trapezoidal rule integration, related to Element's type 5 

 

 
Figure 15(a). Average error of stiffness matrix by Gauss 

Quadrature integration, related to Element's type 5 

 

 
Figure 15(b). Maximum error of stiffness matrix by 

Gauss Quadrature integration, related to Element's type 5 

 
Figure 16(a). Average error of stiffness matrix by Sub 

elements rule integration, related to Element's type 5 

 
Figure 16(b). Maximum error of stiffness matrix by Sub 

elements rule integration, related to Element's type 5 

 

As indicated earlier in Figure 7, element 1 

resulted in a disturbance recounted to Gauss Quadrature 

rule. This is due to the fact that when odd number 

sampling points are selected, the mid points are placed 

on discontinuity boundary. Thus when solving 

numerically, significant errors appear.  

In element type 5 if we use trapezoidal 

integration, considering a 25*25 network which means 

executing calculations for 625 points, average or even 

maximum errors do not reach 1% in stiffness matrix. But 

if we use Gauss Quadrature, average and maximum 

errors in stiffness matrix never reaches a less than 1%. 
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However, by using sub element rule, a less than 1% 

average and maximum errors are obtained with only a 

3*3 and 5*5 networks, respectively. This means by 

carrying calculations for only 18 and 25 points, a less 

than 1% average and maximum errors in stiffness matrix 

will be performed, respectively.  

Number of required sampling points to reach 2%, 

5% and 10% errors were preceded and are listed in Table 

5. 

 

Table 5. Required minimum sampling points number to 

achieve different errors in element type 5 

Type of integration 

Trape-

zoidal 

rule 

Gauss 

Quad-

rature 

rule 

Sub 

eleme-

nts 

rule 

Required number of sampling 

points to achieve a less than 2% 

average error 

17*17 --- 2*5*5 

Required number of sampling 
points to achieve a less than 2% 

maximum error 

188*188 --- 2*3*3 

Required number of sampling 

points to achieve a less than 5% 

average error 

11*11 18*18 2*4*4 

Required number of sampling 

points to achieve a less than 5% 
maximum error 

124*124 --- 2*3*3 

Required number of sampling 
points to achieve a less than 10% 

average error 

7*7 12*12 2*4*4 

Required number of sampling 
points to achieve a less than 10% 

maximum error 

89*89 --- 2*2*2 

 

Element type 6 

Figure 5 performs crack tip and discontinuity 

enrichments for the nodes of type 6 element. In order to 

investigate on the stiffness matrix's error, integration is 

executed by trapezoidal and Gauss Quadrature rule. 

Results of which are illustrated in Figures 17 and 18. 

Number of required sampling points to reach 1%, 

2%, 5% and 10% errors are shown in Table 6. 

 
Figure 17(a). Average error of stiffness matrix by 

Trapezoidal rule integration, related to Element's type 6 

 
Figure 17(b). Maximum error of stiffness matrix by 

Trapezoidal rule integration, related to Element's type 6 

 
Figure 18(a). Average error of stiffness matrix by Gauss 

Quadrature integration, related to Element's type 6 

 
Figure 18(b). Maximum error of stiffness matrix by 

Gauss Quadrature integration, related to Element's type 6 

 

Table 6. Required minimum sampling points number to 

achieve a different error in element type 6 

Type of integration 
Trapezo-

idal rule 

Gauss 

Quadra-

ture rule 

Required number of sampling points to achieve a 

less than 1% average error 
21*21 4*4 

Required number of sampling points to achieve a 

less than 1% maximum error 
185*185 5*5 

Required number of sampling points to achieve a 

less than 2% average error 
15*15 3*3 

Required number of sampling points to achieve a 

less than 2% maximum error 
136*136 5*5 

Required number of sampling points to achieve a 

less than 5% average error 
9*9 3*3 

Required number of sampling points to achieve a 

less than 5% maximum error 
88*88 5*5 

Required number of sampling points to achieve a 

less than 10% average error 
7*7 3*3 

Required number of sampling points to achieve a 

less than 10% maximum error 
62*62 4*4 
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Element type 7 

This element's condition is similar to that of type 

5 however, here only discontinuity enrichment is carried 

out.  The error computation on the element's nodes was 

carried out using trapezoidal, Gauss Quadrature and sub 

element rules. Stiffness matrix's errors are shown in 

Figures 19, 20 and 21. 

 

 
Figure 19(a). Average error of stiffness matrix by 

Trapezoidal rule integration, related to Element's type 7 

 

 

 
Figure 19(b). Maximum error of stiffness matrix by 

Trapezoidal rule integration, related to Element's type 7 

 

 

 
Figure 20(a). Average error of stiffness matrix by Gauss 

Quadrature integration, related to Element's type 7 

 
Figure 20(b). Maximum error of stiffness matrix by 

Gauss Quadrature integration, related to Element's type 7 

 

 
Figure 21(a). Average error of stiffness matrix by Sub 

elements rule integration, related to Element's type 7 

 

 
Figure 21(b). Maximum error of stiffness matrix by Sub 

elements rule integration, related to Element's type 7 

 

In element type 7 if we use trapezoidal integration 

for a 7*7 and 21*21 networks, average and maximum 

errors in stiffness matrix would be found less than 1%. 

Using Gauss Quadrature integration, an average error of 

below 1% is achieved with even numbers of sampling 

points higher than 10*10 networks. Maximum error in 

stiffness matrix never lowers to a less than 1%. 

However, in case of using sub element rule with just a 

2*2 network in each sub element which means executing 

calculations for only 8 points, stiffness matrix performs 

an exact solution. 
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Element type 8 

For this type of the element only discontinuity 

enrichment is done. In order to calculate errors related to 

stiffness matrix, integration is done by trapezoidal and 

Gauss Quadrature rule. Stiffness matrix errors are shown 

in Figures 22 and 23. 

 
Figure 22(a). Average error of stiffness matrix by 

Trapezoidal rule integration, related to Element's type 8 
 

 
Figure 22(b). Maximum error of stiffness matrix by 

Trapezoidal rule integration, related to Element's type 8 
 

 
Figure 23(a). Average error of stiffness matrix by Gauss 

Quadrature integration, related to Element's type 8 

 
Figure 23(b). Maximum error of stiffness matrix by 

Gauss Quadrature integration, related to Element's type 8 

 

For element type 8 if using a trapezoidal 

integration considering a 6*6 network, average error in 

stiffness matrix reaches a value less than 1% and by 

considering a 15*15 network, maximum error in 

stiffness matrix would be less than 1%. In case of using 

Gauss Quadrature, a 2*2 network in each element results 

an exact solution for the stiffness matrix. 

 

Calculation of SIFs 

Since in calculations related to cracked structures 

one of the most important goals is to calculate stress 

intensity factor (SIF) which is the criterion of crack's 

propagation, at this part we study the effect of 

integration error on created error at this coefficient. 

Here, SIFs are computed using domain form of 

the interaction energy integral owing to the following 

advantages. This approach is based on the path 

independent J -integral (Rice, 1968) and thus, it is mesh 

independent (Dhondt, 2001). Further, it can be easily 

integrated into a finite element code, and does not 

require any mesh rearrangement near crack tip unlike 

some other methods, such as virtual crack extension 

(Delorenzi, 1985), or virtual crack closure integral 

(Buchholz et al., 1988). 

The interaction integral is the sum of two 

cinematically admissible states of a cracked structure. 

State 1 (σij
(1)

,εij
(1)

,u
(1)

,v
(1)

)  corresponds to the actual state, 

whereas state 2 (σij
(2)

,εij
(2)

,u
(2)

,v
(2)

)  corresponds to an 

auxiliary state, which can be the asymptotic crack tip 

fields for either mode I or mode II from equations 9 and 

11, respectively. 

The domain form of interaction integral is shown 

in Figure 24 and is given by (Edke and Chang, 2011): 
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where q is a weighting function, being equal to 1 

on an open set containing the crack tip (Γ1)and vanishes 

on the outer contour(Γ2). The interaction energy integral 

is related to the SIFs as follows (Edke and Chang, 2011): 

 (1,2) (1) (2) (1) (2)

*

2
I I II III K K K K

E
    (13) 

where E
*
 assumes the value of E⁄(1-ν

2
) and 

E⁄2(1+ν) for plane stress and plane strain states, 

respectively. To obtain mode I SIF, the auxiliary state 

(state 2) is chosen to be the pure mode I condition. 

Substituting KI
(2)

=1 and KII
(2)

=0 in the above equation 

gives: 
*

(1) (1. )

2

ModeI

I

E
K I   (14) 

where I
(1,Mode I)

, is the interaction integral for the 

actual state and mode I state. Field variables for the 

actual state (σij
(1)

,εij
(1)

,u
(1)

,v
(1)

) are obtained by the XFEM 

solution and those for auxiliary mode I state are obtained 

by directly substituting KI
(2)

=1 and KII
(2)

=0 in equations 

9 and 11. In a similar manner, mode II SIF can be 

obtained by directly substituting KI
(2)

=0 and KII
(2)

=1  in 

equations 9 and 11. 
*

(1) (1. 2)

2

Mode

II

E
K I   (15) 

 
Figure 24. Interaction integral converted into domain 

form (Edke and Chang, 2011) 

 

In this part an edge cracked plate in dimensions of 

2*2 is considered similar to Figure 25.  In order to do 

XFEM calculations this plate is meshed by a 19*19 

network. Amounts of displacement of boundary nodes of 

this network is calculated by means of equation 9 for 

conditions (KI=1 and KII=0) and (KI=0 and KII=1). After 

executing XFEM calculations amounts of KI and KII is 

calculated by interaction integral method for each 

condition. 

 
Figure 25. Structured mesh for edge cracked plate 

In calculations related to stiffness matrix 

integration, considering related results of stiffness matrix 

errors, for integrations elements of type 2, 3, 4 and 6 is 

done by Gauss Quadrature considering a 5*5 network. In 

case elements type 5 and 7 sub elements rule is applied 

based on pattern shown in Figure 13 which we have used 

a 5*5 and 2*2 networks gradually in each sub element.  

Element 1 integration was done by sub element rule 

based on pattern shown in Figure 8. Relation between 

number of integration point's network in sub elements of 

element type 1 and calculated SIF is shown in Figure 26. 

 
Figure 26. Convergence in stress intensity factors by 

Sub elements rule integration in element type 1 

 

Considering this Figure it is clear that increase in 

integration points to more than 3*3 networks in each sub 

element is not effective on calculations' general result.  

Amount of SIFs are studied by several meshes 

and results are shown in Table 7. In order to calculate 

stiffness matrix, for integration of elements type 2, 3, 4 

and 6 we have used Gauss Quadrature rule considering a 

5*5 network. In case elements type 5 and 7 we have used 

sub element rule based on patterns shown in Figure 13 

which are gradually 5*5 and 2*2 for each sub element. 

For element type 8 we have used Gauss Quadrature rule 

considering a 2*2 network. Element 1's integration was 

done by means of sub element rule based on patters 

shown in Figure 8 which a 5*5 network was used for 

each sub element. 

 

Table 7. Relation between element's size and calculated 

SIFs 

Number of elements in mesh KI/ KI(exact) KII/ KII(exact) 

5*5 0.5368 0.5428 

9*9 1.0174 1.0143 

15*15 1.0112 1.01 

19*19 1.0091 1.0082 

25*25 1.0071 1.0066 

29*29 1.0063 1.0058 

35*35 1.0053 1.0049 

 

CONCLUSION 

 

Nodal enrichment of different types of elements 

were studied using different integration rules in the 

analysis of cracked structure using eXtended Finite 

Element Method.  
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Regarding elements with only discontinuity 

enrichment on their corresponding nodes, Gauss 

Quadrature technique was applied by means of a 2*2 

integration network as a result of which an exact solution 

was executed. This was due to the fact that the new 

shape functions remained linear after the enrichment.  

In case of an element with only discontinuity 

enrichment applied to its corresponding nodes while the 

element was divided into two parts by a crack, sub 

element rule was applied and a 2*2 integration network 

was executed in each sub element.  Results performed an 

exact solution. This could be due to the fact that the new 

shape functions remained linear after the enrichment. 

In case of enhancing an element with 

discontinuity and singularity enrichments applied to its 

corresponding nodes, executing Gauss Quadrature 

technique on a 5*5 integration network, a mean error of 

less than 1% was obtained on the stiffness matrix. The 

reason for such an even though minor error could be due 

to the nonlinearity behavior of nodal shape functions 

after enrichments. 

Concerning elements with singularity enrichment 

applied to their corresponding nodes while the elements 

were divided into two parts by a crack, or tip of crack is 

located inside one element, using sub element rule on a 

5*5 integration network, applied to each sub element, a 

less than 1% mean error was detected on the stiffness 

matrix. The reason for the existence of this minor error 

could be due to the nonlinearity behavior of nodal shape 

functions after enrichments. 

Studies also indicated that size of element does 

not affect the accuracy of stiffness matrix computation.  

It is important to note that using Gauss 

Quadrature technique for the elements, being divided 

into two parts by the crack or the crack tip is placed 

inside them, an exact solution cannot be met.  Therefore 

it is emphasized that if sub element rule is not used for 

these elements, trapezoidal integration rule may perform 

better results. 

Also the present study performed the fact that 

even SIF calculation is not affected by the 1% error in 

stiffness matrix and the accuracy of results are 

manipulated by the element size. 
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