
To cite this paper: Nasehi Oskuyi,
 
N. and Salmasi, F. 2012. Vertical Sluice Gate Discharge Coefficient . J. Civil Eng. Urban. 2(3): 108-114. 

Journal homepage: http://www.ojceu.ir/main/      

108 

 
 

Journal of Civil Engineering and Urbanism 

 

Volume 2, Issue 3: 108-114 (2012)     ISSN-2252-0430 

 

Vertical Sluice Gate Discharge Coefficient 
  
Navid Nasehi Oskuyi

1*
 and Farzin Salmasi

2 
 

1 
M. Sc. Student of hydraulic structures, Department of water sciences engineering, Agriculture faculty, Tabriz University, 

Tabriz-Iran 
2 

Department of water sciences engineering, Agriculture faculty, Tabriz University, Tabriz-Iran  
 

*Corresponding author’s Email: navid.nasehi@gmail.com, salmasi@tabrizu.ac.ir 
 

ABSTRACT: Sluice gates are widely used for flow control and discharge measurement in irrigation and 

drainage channels. Their discharge coefficient depends on geometric and hydraulic  parameters. Errors are 

inevitable when their values are abstracted from empirical curves for a range of reasons including the 

resolution of the graphs, judgments in reading the values, the need for their digital values at the 

computational stages. This study develops two equations, linear and nonlinear, to determine discharge 

coefficient by using dimensional analysis and linear and nonlinear regression analysis, for both free and 

submerged flow conditions. A total of 5200 data point was generated, which involved different effective 

hydraulic parameters. The study also included the results of the past studies carried out by different 

investigators concerning sluice gate discharge coefficient determination for comparison purposes. The 

performance of the nonlinear equation improves in comparison with the linear equation. All numerical 

computations were carried out by Wolfram Mathematica v.6 software.  
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1. INTRODUCTION 

 

Discharge can conveniently be measured by 

hydraulic structures for controlling discharge and water 

depth, as they create a one-to-one relationship between 

depth and discharge. Their applications include irrigation 

and drainage canals and overflow spillways . Notably, 

other discharge measuring device are costly, e.g. Laser 

Doppler Anemometer. Attention to the understanding of 

the performance of weir-type flow control structure, e.g. 

over-flow and sharp-crested weirs is relatively better than 

that of standard gates. The basic knowledge of the 

hydraulic performances of gated structures is even poorer 

than of the vibration of these gates, e.g. see [1].  

Open channel flow software modelling has become 

standard design tools for irrigation canals. Over the years, 

research was focused on developing numerical schemes 

for the solution of the shallow-water equations but 

sometimes this was at the expense of overlooking the 

significance of other components, e.g. the performance of 

sluice gates, e.g. see [2]. The mode of flow associated 

with gated structures is often complex under real-time 

conditions but their hydraulics fall into two regimes of: (i) 

modular flows when discharge is independent of the 

tailwater depth; and (ii) submerged flows when there is 

dependency; see Fig. 1.  

This distinction is well established as the 

submergence reduces the discharge through the gates and 

this is reflected on the values of discharge coefficient. 

Figure 1 shows that that submerged flow occurs when the 

tailwater depth is greater than the downstream depth of 

the hydraulic jump, 3y . 

  

 
Figure 1 Scheme of a gate operating under free (a) and 

submerged (b) flow condition. 

  

A description of flow equations has been 

approached by theoretical and empirical formulas and by 

graphical approaches. Swamee (1992) presents two 

formulas to distinguish modular and submerged flow 

conditions based on Henry’s (1950) curve. Yen et al. 

(2001) presents a theoretical formula and some 

experimental graphs to determine maximum allowable 

2012, Scienceline Publication  

  (Received: March 30, 2012; Accepted: April 05, 2012; Published: May 25, 2012) 

http://www.science-line.com/index/


To cite this paper: Nasehi Oskuyi,
 
N. and Salmasi, F. 2012. Vertical Sluice Gate Discharge Coefficient . J. Civil Eng. Urban. 2(3): 108-114. 

Journal homepage: http://www.ojceu.ir/main/      

109 

tailwater depth for free flow (or minimum allowable 

tailwater depth for submerged flow). They define the 

condition separating free flow and submerged flow in 

terms of flow contractions at the gate and derive equations 

for discharge coefficient in terms of dimensionless 

discharge, submerged water depth, maximum allowable 

gate opening. They also compare their results with other 

investigators approach and report good fitness.  

 In this study we’ve used Swamee’s (1992) 

approach to determine whether the jump will be free or 

submerged. 
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where y1 = upstream depth, y3 = tailwater depth 

and b = gate opening. 

 

   Discharge Formulation 

Using the Bernoulli’s and continuity equations in 

sluice gate hydraulic jump flow, it is possible to derive the 

following widely known expression to calculate the gate 

discharge for a rectangular cross section: 

12dq C b gy    (3) 

where q = discharge per unit width of channel, g = 

gravity acceleration, b = gate opening, y1 = upstream 

depth and Cd = discharge coefficient. Cd depends on 

different parameters such as upstream and tailwater 

depths, gate opening, contraction coefficient of gate and 

the flow condition.  

Eq. (3) is applicable for both hydraulic conditions. 

 Henry (1950) used Eq. (3) and evaluated Cd 

experimentally. The outcome of this study is the well-

known Henry’s curve. 

 Henderson (1966) derived two equations to 

compute Cd for each flow condition.  
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Where 
2

1 1 3/ , / , ((1/ ) 1) 2( 1)cC b y y y           

and Cc = contraction coefficient. 

The contraction coefficient is defined as the ratio of 

the water depth at vena contracta, y2 to gate opening 

( 2cC y b  ).  

For sharp-edge vertical sluice gate Cc varies 

between 0.598 and 0.611 based on theoretical reasons [5]. 

Since the contraction coefficient depends on gate opening, 

shape of the gate lip, upstream water depth, gate type, and 

so forth, it is very difficult to know its real value for all 

operating conditions in practice [7]. For practical 

purposes, selecting Cc = 0.61 have an accurate results and 

many researchers have used this value [6]. 

Another study of sluice gate discharge calculation 

was performed in Rajaratnam and Subramanya (1967). 

They expressed the discharge through a sluice gate as  

12 ( )d cq C b g y C b    (6) 

12 ( )dq C b g y y    (7) 

A value of 0.61 was used for Cc and the analysis of 

experimental data indicated that Cd was uniquely related 

to b/y1 for both flow conditions. For b/y1 < 0.3 this 

relationship was almost linear with Eq. (8). 
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 As can be noted, Eq. (7) makes use of gate 

submergence depth, y (see Fig. 1). Because it is very 

difficult to accurately measure its value (this zone has 

standing recirculation flows), it must be predicted. After 

certain simplifications they obtained 
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 Swamee (1992) obtained discharge coefficient 

equations for free and submerged flow, by performing 

nonlinear regression on Henry’s (1950) curve. 
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MATERIALS AND METHODS 

 

First we consider free flow condition. Relation 

among hydraulic parameters can be determined by 

applying the Bernoulli’s equation between sections 1 and 

2, and specific force equation between sections 2 and 3 in 

Fig. 1-a. Considering the channel bottom as the datum and 

neglecting the energy losses at the gate, Bernoulli’s and 

specific force equations yield Eq. (12)and (13). 
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Combination of Eq. (12) and (13) results Eq. (14). 
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By selecting different (but hydraulically feasible) 

values for y1, y3 and q, we can solve Eq. (14)  with respect 

to y2. Then we can calculate gate opening b (b = y2/0.61). 

After that using Eq. (1) and (2) we could specify flow 

condition. Now we can calculate discharge coefficient by 

presented formulas for both free and submerged flow.  

 All of the computations were carried out by 

Mathematica v.6 software. The input data (y1, y3 and q) 
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generation process is programmed to generate random 

real numbers between following defined limits (It’s 

notable that SI system of units was used in all over this 

paper): 

1 3 10.1 5 ,   0.1  ,   0.005 2y y y q     
 

These values are which practically occurs in 

irrigation and drainage channels. It’s notable that the 

tailwater depth always must be less than the upstream 

depth otherwise the flow direction will be reverse and if 

these two depths be equal, then there is no flow and 

discharge coefficient will be zero.  

At any point three input data are generating at the 

same time and are substituting in Eq. (14). Each data 

point yields four values for y2 as the roots of Eq. (14) in 

which two of them always are with minus sign and are not 

practically acceptable values. The third and fourth roots 

are complex numbers for some data points, so these data 

points should be eliminated from data series. Use of the 

third real roots at calculation process yields negative 

values for y in submerged condition, so this root is not 

acceptable too, and only the natural values of fourth root 

at any data point will be used in future steps. 

 Now by specifying the values of y2 and 

contraction coefficient, the gate opening could be 

calculated. In some data points, y2 and then the gate 

opening is a very small value which is certainly not 

feasible. If these data points be used in following 

processes (dimensional analysis and dimensionless 

numbers generation), unusual and digressive values will 

obtain which affects regressing result and decreases the 

fitness of fitted relations. So data points with a gate 

opening less than 0.05 m are eliminated.       

 Initially generated data sets  of y1, y3 and q were 

selected about 10,000 points ,in order to beset all of the 

possible situations, but after ignoring unacceptable data 

points, finally 5200 data set were remained, and it is about 

45 % of initial points. 650 data points of the remained set 

are about the free flow and 4550 data points are about the 

submerged flow condition. 

A part of generated data points and calculated 

parameters are presented in Table 1.   

 At submerged flow the water depth at the 

immediately downstream of the gate (section 2 in Fig. 1-

b) is y. So y must be used as the piezometric head at the 

right side of the Bernoulli’s equation, but at velocity head 

term, y2 is used as flow section depth because water flows 

only from vena contracta and there is just a stationary 

circulating flow at the upper part of the vena contracta. So 

Bernoulli’s equation alters to Eq. (15).  
2 2
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q q
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After finding y2 values, by substituting y1, y2 and q 

at Eq. (15), y values will be obtained which are presented 

in Table 1, too. For free flow y equals to y2 (see Table 1). 

For Rajaratnam and Subramanya (1967) method we 

couldn’t use Eq. (8) to determine Cd when 1/b y  is 

greater than 0.3, so no calculation were done to compute 

Cd value for this situation. This condition is specified by 

“-“ in Table 1. yR column in Table 1 corresponds the 

solution of Eq. (9). In addition, CdH, CdR and CdS 

columns in Table 1 are discharge coefficients obtained by 

Henderson (1960), Rajaratnam and Subramanya (1967) 

and Swamee (1992), respectively.  

 

Dimensional Analysis 

Effective hydraulic parameters are as  follows for 

flow through sluice gate:
 1 3, , , , , ,dC q g b y y y . By 

rearranging theses parameters as dimensionless 

parameters, we have 
3

31

2
( , , , )d

yygb y
C F

q b b b
   (16) 

As can be seen, in addition to 
1y b  and 

3y b  

which were used in Henry (1950) and Swamee (1992), 

there are some other parameters involved in this 

phenomenon. Dimensionless parameter q
2
/gb

3 
is Froude 

Number regarding to gate opening. So Eq. (16) can be 

alters to Eq. (17). 
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All independent parameters in Eq. (17) are 

contributing in submerged flow condition and only two of 

them (1/Fr
2
 and y1/b) are contributing in the free flow 

condition.  

 We can specify F by performing experimental 

studies for obtaining data or by generating these required 

data from analysing governing equations and by the use of 

computers. As mentioned previously, second method was 

used in this study. 

At this step multiple regression techniques were 

used to determine F regarding to generated and then 

refined data series. For any flow condition a linear and 

nonlinear functions are defined and regressing procedure 

is performed base on these functions. Linear and 

nonlinear regressing pattern is as following, respectively 
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where n is number of data points and  and   are 

unknown parameters that regressing target is to find them. 

Ordinary least square (OLS) method was used to 

determine these parameters.  

Eq. (18) and (19) are arranged for submerged 

condition and as mentioned previously y b  and 3y b  

didn’t used in free flow condition.   

 

RESULTS 

 

In this study by the use of Eq. (14) and (15), a code 

was written in Mathematica v.6 to coincide solve of 

Bernoulli’s an specific force equations. This code can 

omit negative and complex roots of Eq. (14) and (15), 

also it is designed to generate applicable values for 

engineering purposes. After generation of geometrical and 

hydraulic properties of flow, the flow condition whether 

free or submerged was determined. After that, the 

discharge coefficient computed by Henderson (1966), 
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Rajaratnam and Subramanya (1967), and Swamee (1992) 

approaches and finally a sample of 5200 data points 

presented in Table 1. 

Then using the computed discharge coefficients, 

discharge passes through the gate for each data points 

computed by Eq. (3) or (6) and (7). Table 2 presents a part 

of computed discharge values by three methods and 

initially generated values. 

The error introduced by each method is determined 

by the mean absolute percentage error (MAPE). MAPE is 

defined as follows  

1

ˆ100 n
i i

i i

q q
MAPE

n q


   (20) 

where iq
 
is initially generated discharge and ˆ

iq  is  

-calculated values of discharge by different researchers 

formulas and n is total number of data points. 

The MAPE for Henderson (1966), Rajaratnam and 

Subramanya (1967), and Swamee (1992) methods is 

6.73%, 4.43% and 23.6% respectively which have a good 

accordance with Sepúlveda et. al (2009) results. 

According to the definition of MAPE criteria, the 

approach of Rajaratnam and Subramanya (1967) has more 

accuracy to state flow through sluice gates, comparison 

with two other methods. It is notable that the discharge 

coefficient computed by this method is approximately 

constant value of 0.59, nevertheless this method has a 

high accuracy for computation of discharge rate. The only 

restriction of this method is the b/y1 < 0.3 constrain which 

is satisfied for 4151 of 5200 data points.  

 

Table 1. A part of generated and calculated parameters by Mathematica code. 

No. y1 y3 q y2 y yR b Fr Condition CdH CdR CdS 

1 2.03978 1.29503 1.22186 0.24896 0.83040 0.8681 0.40746 1.49985 Sub 0.4740 0.5949 0.4546 

2 3.62529 3.51484 1.63123 0.84236 3.44448 - 1.37867 0.32172 Sub 0.1402 - 0.1515 

3 0.37555 0.16531 1.37889 0.22713 0.22713 - 0.37173 1.94240 Free 0.4823 - 0.3598 

4 3.40270 2.82733 0.53478 0.15066 2.76177 2.7641 0.24658 1.39446 Sub 0.2654 0.5911 0.1726 

5 2.22315 0.16703 1.25910 0.23386 0.23386 0.7220 0.38275 1.69761 Free 0.5811 0.5941 0.5498 

6 2.85622 2.61771 0.36297 0.15767 2.58695 2.5880 0.25806 0.88399 Sub 0.1878 0.5916 0.1172 

7 2.59109 1.79507 1.25271 0.26743 1.48465 1.5009 0.43769 1.38121 Sub 0.4014 0.5940 0.3716 

8 3.61884 3.28892 0.11077 0.04296 3.28017 3.2804 0.07032 1.89635 Sub 0.1869 0.5895 0.0598 

9 1.67327 1.34993 1.28254 0.36472 1.07297 - 0.59693 0.88786 Sub 0.3749 - 0.3986 

10 2.11579 1.86706 1.99555 0.60435 1.60542 - 0.98912 0.64767 Sub 0.3131 - 0.3745 

11 3.14932 2.41600 0.16433 0.04256 2.38956 2.3905 0.06965 2.85400 Sub 0.3001 0.5896 0.1339 

12 2.47770 1.45313 0.51334 0.10584 1.28101 1.2878 0.17323 2.27315 Sub 0.4250 0.5910 0.3449 

13 3.77669 0.15417 1.71330 0.23991 0.23991 1.1289 0.39265 2.22321 Free 0.5924 0.5920 0.5665 

14 1.60619 0.92361 0.80825 0.16946 0.45973 0.5085 0.27736 1.76661 Sub 0.5191 0.5941 0.4898 

15 1.40228 0.21594 1.39896 0.49191 0.49191 - 0.80509 0.61829 Free 0.52571 - 0.4881 

16 2.31773 1.16745 0.68530 0.12665 0.83006 0.8468 0.20729 2.31826 Sub 0.4902 0.5916 0.4449 

17 1.43791 0.77458 0.16806 0.04385 0.69 0.6932 0.07177 2.79062 Sub 0.4408 0.5904 0.3434 

18 0.72363 0.6313 0.18905 0.11472 0.58869 0.5914 0.18775 0.74192 Sub 0.2672 0.5967 0.2608 

19 3.16135 1.19207 0.72567 0.10423 0.69360 0.7217 0.17059 3.28820 Sub 0.5401 0.5906 0.5012 

20 3.12923 2.95729 1.64828 0.68813 2.85095 - 1.12624 0.44029 Sub 0.1867 - 0.2012 

21 3.53052 3.26738 0.87167 0.34327 3.20498 3.2076 0.56182 0.66087 Sub 0.1864 0.5937 0.1449 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

5193 1.43763 1.04689 1.03028 0.26605 0.6995 - 0.43544 1.14479 Sub 0.4455 - 0.4501 

5194 3.57745 2.93680 1.80137 0.43233 2.70552 2.7174 0.70758 0.96628 Sub 0.3038 0.5948 0.2786 

5195 4.99268 4.81000 1.48372 0.67386 4.75009 4.7531 1.10288 0.409 Sub 0.1359 0.5955 0.1126 

5196 4.13830 4.07777 1.28685 0.91563 4.04256 - 1.49858 0.22396 Sub 0.0952 - 0.0938 

5197 1.81296 1.71428 1.5543 0.67462 1.57987 - 1.10412 0.42773 Sub 0.2360 - 0.3697 

5198 4.70422 4.48915 0.49756 0.22981 4.46588 4.4667 0.37613 0.68866 Sub 0.1376 0.5913 0.0734 

5199 1.48485 1.17614 1.07484 0.31344 0.91221 - 0.513 0.93397 Sub 0.3881 - 0.4081 

5200 0.48798 0.26932 1.62435 0.29477 0.29477 - 0.48244 1.54766 Free 0.4824 - 0.3627 
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Table 2. Results of generated discharge (q) in this study and comparison with other researchers (qH =Henderson, 1966; 

qR=Rajaratnam and Subramanya, 1967; qS=Swamee, 1992). 

No. q qH qR qS No. q qH qR qS 

1 1.221862 1.221862 1.162262 1.172048 19 0.725678 0.725678 0.69706 0.673461 

2 1.631237 1.631237 - 1.762371 20 1.648285 1.648285 - 1.776251 

3 1.378895 0.486694 - 0.363135 21 0.871679 0.871679 0.83958 0.677831 

4 0.534783 0.534783 0.515934 0.347832 22 0.465574 0.465574 0.446378 0.420477 

5 1.259101 1.469197 1.420665 1.389919 23 0.639441 0.639441 0.616846 0.387148 

6 0.362973 0.362973 0.350221 0.226457 24 0.119889 0.119889 0.114086 0.119269 

7 1.252711 1.252711 1.202455 1.159951 25 1.322795 1.322795 1.274138 1.083841 

8 0.110771 0.110771 0.10683 0.035462 . . . . . 

9 1.282546 1.282546 - 1.363531 . . . . . 

10 1.995553 1.995553 - 2.386748 . . . . . 

11 0.164335 0.164335 0.158481 0.073358 5193 1.030288 1.030288 - 1.041033 

12 0.513341 0.513341 0.494724 0.416649 5194 1.801373 1.801373 1.729075 1.652081 

13 1.713305 2.002556 1.936652 1.914865 5195 1.483729 1.483729 1.423835 1.229184 

14 0.808257 0.808257 0.764728 0.762703 5196 1.286855 1.286855 - 1.26754 

15 1.39896 2.220054 - 2.061595 5197 1.5543 1.5543 - 2.434875 

16 0.685307 0.685307 0.65887 0.621988 5198 0.497563 0.497563 0.480154 0.26551 

17 0.168067 0.168067 0.16199 0.130921 5199 1.074849 1.074849 - 1.130247 

18 0.189058 0.189058 0.18043 0.18452 5200 1.624357 0.720158 - 0.541539 

Finally F is specified for both free and submerged 

conditions with the aid of linear and nonlinear regression 

techniques. It should be said, in this procedure CdS is 

used because Swamee (1992) formulas are based on 

experimental studies of flow behavior through a sluice 

gate. Although, we can use CdH because this method has 

low value of MAPE, but this method is theoretical and it 

just has good accuracy comparing with Henry’s curve 

for low values of  1y b  especially in submerged 

condition. So Swamee (1992) method is preferred.    

 

Regression Analysis  

Multiple regression analysis was carried out with 

different combinations of the dimensionless parameters 

in Eq. (17). Several linear and nonlinear multiple 

regressions were conducted using the Linear and 

Nonlinear Regressing Package of Mathematica v.6. The 

results for each flow condition are as follows. 

a) Free Flow  

The fitted linear and nonlinear equations  for free 

flow and their determination coefficients are given by 

Eq. (21) and (22) respectively. 

1

2

1
0.4556 0.01194 0.000085d

y
C

b Fr

   
     

  

, R
2
 = 0.514 (21) 

0.1289 0.0107

1

2

1
0.4445d

y
C

b Fr

   
   

  
, R

2 
= 0.806 (22) 

It can be seen from Eq. (21) and (22) that Fr is less 

important than y1/b, so it can be canceled from 

regressing procedure to simplifying equations as 

following 

10.4552 0.01197d

y
C

b

 
   

 
 , R

2 
= 0.513 (23) 

0.1219

10.44457d

y
C

b

 
  

 
  , R

2 
= 0.7894 (24) 

Determination coefficient of Eq. (23) and (24) are 

very close to that of Eq. (21) and (22). This indicates that 

the discharge coefficient has just influenced by upstream 

water depth. So it is recommended to use Eq. (23) and 

(24) because of their simplicity and ease of application.    

Also, nonlinear equation has more precision compared 

with linear form, so it is better to use nonlinear equation. 

Fig. 2 depicts Cd variation against y1/b and 1/Fr
2
 

and quietly acknowledges the stated points. In fact, Fig. 

2-a is the same Henry’s curve. The interesting mater 

about Fig. 2-b is that hysteresis phenomenon exists in 

data point trend. It means for a constant discharge rate, 

Cd is not same for increasing and decreasing flow rates. 

This had not addressed by other researchers previously. 
 

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0 10 20 30 40

y1/b

C
d

 

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.01 0.1 1 10 100 1000
1/Fr

2

C
d

 
Figure 2. Variation of Cd against (a) y1/b and (b) 1/Fr

2
 

for free flow condition. 

(a) 

(b) 
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b) Submerged Flow 

 

Multiple regression analysis was performed in 

submerged flow with different combinations of the 

dimensionless parameters y1/b, y3/b, y/b and 1/Fr
2
. The 

perfect fitted equations are given by Eq. (25) and (26). 

31

2

1
0.2681 0.0015 0.0982 0.1018 0.0013d

yy y
C

b b b Fr
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          

      
  , R

2 
= 0.7347 (25) 

0.98980.077 0.1637 0.4132
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 
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       

      
  , R

2 
= 0.9883 (26) 

Similarly, for submerged flow we can omit some 

of these parameters to obtain simple equations with 

approximately same precision. Because four dependant 

parameters are contributing in this condition, thus there 

will be fourteen other combinations of these parameters. 

Among these combinations the simplest and the most 

accurate linear and nonlinear equations are Eq. (27) and 

(28), respectively. 
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y y
C

b b

   
     

  
 , 

 R
2 

= 0.71 (27) 

0.6825 0.3929
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y
C

b Fr

 

   
   

  
,  

R
2 

= 0.9831 (28) 

As can be seen Eq. (28) could state flow passes 

through a submerged sluice gate with a fine precision. So 

it is clear to use nonlinear equation for submerged 

condition, too. 

In Fig. 3 variation of Cd with y1/b, y3/b, y/b and 

1/Fr
2
 are presented. As it can be seen, discrepancy 

between these dimensionless parameters and Cd is too 

high (no trend line can be drawn between them), but 

interaction of these parameters with each other results 

high accuracy in prediction of Cd e.g. in Eq. (26). 

In order to comparing the results of this study 

with other experimental studies, another simplified form 

of Eq. (26) is presented with independent parameters of 

y1/b, y3/b as Eq. (29). 
1.44861.0676

310.3865d

yy
C

b b



  
    

   
 , R

2 
= 0.82 (29) 

As can be seen, Eq. (29) has less precision with 

respect to Eq. (28), but by the use of this equation we 

can make a good judgment about this study and other 

researchers. Fig. 4 and 5 present Cd prediction in free 

and submerged flow condition by Eq. (24) and (29), 

respectively with those of Henry (1950) and Swamee 

(1992). 

It is interesting to note that, Eq. (24) and (29) 

have good clearance to Henry’s curves and sometimes 

have more conformity compared with Swamee (1992) 

formulas results. Also, Eq. (24) and (28) or (29) are 

simpler than Eq. (10) and (11). 
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Figure 3 Variation of Cd against (a) y1/b, (b) y3/b, (c) y/b 

and (d) 1/Fr
2
 for submerged flow condition. 
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Figure 4. Prediction of Cd in free flow condition with 

those of Henry (1950) and Swamee (1992). 

 

 

Figure 5. Prediction of Cd in submerged flow condition 

with those of Henry (1950) and Swamee (1992). 

 

Finally, using Eq. (24) and (28), discharge 

coefficient for generated data points are computed. Then 

using Eq. (3) discharge rate obtained and MAPE were 

calculated for these values. Fig. 6 depicts MAPE values 

for these formulas and other researcher’s formulas to 

calculate discharge coefficient. As one can see for 

present study MAPE equals to 21.54 % and this 

demonstrates its conformity with Swamee (1992) and 

improved value than Swamee (1992). 
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Figure 6. Comparison of MAPE for Cd obtained in 

present study and in Henderson, 1966 (H), Rajaratnam 

and Subramanya, 1967 (R & S), and Swamee, 1992 (S). 

 

CONCLUSIONS 

 

Study of free-surface flow under sluice gate is 

important to provide a prediction tool for the optimal 

management of irrigation and drainage channels. Flow 

through the gate may be free or submerged depending on 

the tailwater depth. Here, we considered an alternative to 

solve the governing equations. Our approach is based on 

solving Bernoulli’s and specific force equations 

simultaneously with Wolfram Mathematica v.6 software. 

High quantity of data points (about 5200) in 

dimensionless form was produced. We compared the 

predictions obtained from numerical simulation and 

experiments performed on a laboratory by other 

researchers. Results showed high accuracy of present 

method in estimation of discharge coefficient. Effect of 

different parameters on estimation of discharge 

coefficient is shown by accurate regression equations. 
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