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ABSTRACT 

The reuse of doubly symmetric beams by converting them into monosymmetric section beams offers some 

promising outcomes and has potential for mitigating carbon footprint of structures. However, due to their 

complexity monosymmetric sections must be used in a configuration that allows the monosymmetry effects to act 

beneficially. Although the South African design standard for hot-rolled steel does not provide any guidance on the 

design of monosymmetric beams, the Southern African steel construction handbook provides a formula for 

determining the critical elastic buckling moment for monosymmetric beams. This guidance implies that the moment 

gradient factor used for doubly symmetric sections can be used on monosymmetric sections as well. The aim of the 

study was to verify the validity of this approach of extending the moment gradient factor used for doubly symmetric 

beams to monosymmetric beams for two specific types of monosymmetric sections. It was found that although this 

approach appears to be justified for monosymmetric members in single curvature bending it may produce 

unconservative values of the critical buckling load in double curvature bending between restraint points. The level 

of un-conservatism also varies for different spans of the same member. This makes it difficult to specify a single 

moment modification factor value for these cases. The sensitivity in terms of load reduction observed for double 

curvature bending case was different for the two members examined with this attributed to differences in how the 

shear centre moves relative to the centroid. It is recommended that the critical buckling load for monosymmetric 

sections be determined on a case specific basis for members in double curvature from linear moment gradients. 

Under single curvature bending the moment gradient factor for doubly symmetric members appears to give 

acceptable predictions of the critical load. 

Keywords: Steel beam, Monosymmetric, Lateral-torsional buckling, Moment gradient factor 
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INTRODUCTION 

 

The  world is facing a climate emergency and this calls for 

innovative approaches as well as concerted effort in 

mitigating the increase in atmospheric carbon. This can be 

done through adoption of practices that foster reduction in 

anthropogenic carbon emissions or in carbon footprint in 

relation to construction related activities. For design 

engineers one way to reduce carbon footprint is to apply 

the practice of reuse in lieu of recycling. Recycling 

involves the use of energy and unless this is sourced from 

renewable energy it too potentially carries a significant 

carbon footprint. The reuse of structural members 

therefore provides a viable alternative for cyclic use of 

materials where the potentially more environmentally 

harmful options of disposal and introduction of new 

materials, or that of recycling using non-renewable energy 

sources are avoided. This is consistent with the options 

illustrated in Halliwell (2024) and discussed in part by 

Hayes (2024) showing the hierarchy of net zero design 

that can be adopted by design engineers. ‘Net zero design’ 

is a design approach that aims to mitigate increase in 

atmospheric carbon emissions by reducing the carbon 

footprint of structures based on proactive design decisions. 

This concept is illustrated in Figure 1 with the ‘Build less’ 

approach being achieved through consideration of 

repurposing, refurbishment and reuse of structural 

members. 

The focus of this study is the reuse option. It has been 

shown by Mudenda and Zingoni (2022) that 

monosymmetric beams of the configuration shown in 

Figure 2 have the potential to be used for strengthening 

existing doubly symmetric I-shaped sections that need to 

have their flexural capacity or stiffness increased for reuse 

purposes. These sections exhibit some peculiarities 

including having a coincident shear centre and centroid at 

a given upstand height as well as a monosymmetry 

constant of zero at another upstand height. These are 

geometrical properties typically associated with doubly 

symmetric sections. These monosymmetric sections, for 
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the simply supported case, also have a range over which 

they show increase in critical elastic moment. The point of 

peak value is observed to be closely related to the upstand 

height at which the shear centre and centroid are 

coincident. Beyond this point the critical moments starts to 

decrease with increase in upstand height. The shear centre 

movement also follows a peculiar path in comparison to an 

I-shaped monosymmetric section. This is discussed later. 

 

 

 

 

 

 

 

 

 

 

Build nothing Challenge the brief 

Build less Repurpose, Refurbish, Reuse 

Build clever Structural Configuration 

Build efficiently 
High utilisation/Carbon efficient 

materials 

Minimise waste Improve construction practices 

Figure 1 Hierarchy of net zero design 

 

 

 
Figure 2 Doubly symmetric I-beam stiffened with flange 

upstands 

 

Figure 2 shows how a doubly symmetric I-shaped 

steel beam is converted into a monosymmetric section by 

the introduction of flange upstand stiffeners. Conversion 

into this monosymmetric section has the potential to 

enhance flexural strength and stiffness of the section as 

discussed. This is desirable if the structure is repurposed in 

a manner that it needs to carry greater loads or if the 

member is to be used in a different structure where greater 

flexural strength or stiffness is needed. This can be 

adopted in lieu of replacing with a new I-shaped member 

of higher strength. Reuse in the same structure is 

particularly desirable as it obviates the need to incur costs 

of demounting the existing member, disposing of it and 

potentially replacing it with a new member that also may 

need costly scaffolding, manpower or machinery to mount, 

in addition to the carbon footprint of its production.  

The use of such a monosymmetric section beam as the 

one considered may result in part or all of the member 

being subjected to a moment gradient that result in double 

curvature bending. For this case it is unclear whether the 

current guidance on the determination of the critical 

buckling load presented in design aids is valid. The study 

aims to verify such guidance provided in the South 

African Steel Construction Handbook (SASCH). This 

study is restricted to elastic critical buckling behaviour. In 

this preliminary study selected discrete members are 

investigated with a general approach to be explored in 

future studies on the basis of the observed outcomes.  

 

Background 

The use of monosymmetric sections for steel beams 

that do not have restraint to the compression flange is not 

so prevalent due, in part, to the complexity associated with 

the lateral-torsional buckling (LTB) behaviour of these 

sections. Lateral-torsional buckling is a stability failure 

that affects beams bending about their major axis and not 

having restraint to the compression flange. It is associated 

with a lateral movement of the compression flange in a 

direction perpendicular to the plane of loading and 

accompanied with twist. Early researchers such as 

Anderson and Trahair (1972) highlighted the ‘Wagner 

effect’ which arises from the shear centre and geometric 

centroid not being at the same location for 

monosymmetric beams. This effect is encapsulated in the 

monosymmetry constant (𝛽𝑥), a geometrical property 

associated with monosymmetric sections. A lot of the 

research on monosymmetric sections has focused on I-

shaped sections, tee sections and compound sections made 

from I-sections with a welded channel cap. In order to find 

the strength of the beams, in most cases the critical elastic 

moment must first be determined. Codes of practice 

typically use the critical elastic moment equation for a 

uniform moment loading case and then allow for other 

loading or bending moment profiles by making use of a 

moment gradient factor. The uniform moment case is 

typically the only case that gives a closed form 

mathematical solution when the boundary conditions are 

pin type with warping of the cross-section permitted, 

hence its use. The moment gradient factor proves to be a 

convenient way of determining the critical load for those 

cases that are different to the uniform moment case with 

simple supports. However, the determination of moment 

gradient factors has largely been based on doubly 

symmetric sections making the direct extension to 

monosymmetric beams questionable and needing 

verification. Although, the South African national standard 

for design of hot-rolled sections (SANS 10162-1) does not 

provide any guidance on design of monosymmetric 

sections, the  Southern African Steel Construction 

Handbook (SASCH) provides  an equation for the elastic 

critical buckling moment of a monosymmetric section and 

implies that the same moment gradient factor as that for 

doubly symmetric beams can be used. The equation is 

shown in equation (1). A simplified equation for obtaining 
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the monosymmetry constant has been developed by 

Kitipornchai and Trahair (1980). The actual equation and 

the simplified version for the monosymmetry constant (𝛽𝑥) 

are shown in equations (2) and (3) respectively. 

𝑀𝑐𝑟,0 =
𝜋2𝐸𝐼𝑦𝛽𝑥

2𝐿2
[1 ± √1 +

4

𝛽𝑥
2

(
𝐺𝐽𝐿2

𝜋2𝐸𝐼𝑦

+
𝐶𝑤

𝐼𝑦

)]          (1) 

𝛽𝑥 =
1

𝐼𝑥

∫ 𝑦(𝑦2 + 𝑥2)𝑑𝐴 − 2𝑦0       
 

𝐴

                                 (2) 

𝛽𝑥 = 0,9 𝑑′ (
2𝐼𝑦𝑐

𝐼𝑦

− 1) [1 − (
𝐼𝑦

𝐼𝑥

)
2

]                                 (3) 

 

In these equations 𝑑′ is the distance between centres 

of area of the two flanges, Iyc being the second moment of 

area of the compression flange about its own strong axis 

[about y-axis in Figure 3 (c)], 𝑥 and 𝑦 being plate 

coordinates, and 𝑦0 the distance between shear centre and 

centroid. It is worth noting that when equation (3) was 

presented, the authors stated that it has a validity range 

which depends on the second moment of area ratio and 

this particular version was derived on the basis of an I-

shaped section. The monosymmetry constant for sections 

considered in the current study was obtained based on 

equation (2) so that validity is not violated. An approach 

presented by Hsu et al. (2012) was adopted and used to 

apply the integration. 

 

Literature study 

The most prevalent early form of the moment 

modification factor approach is reported to be that 

presented by Salvadori (1955). A simple modification by 

who to the equation for a uniform moment case (𝑀𝑐𝑟,0) to 

account for other load cases was proposed as shown in 

equation (4). The form of the moment gradient factor also 

known as the Equivalent Uniform Moment Factor 

(EUMF) was presented as in equation (5) with M1 and M2 

being the moment values at the ends of the unbraced 

length under consideration. The end moment M1 is taken 

as the one with the smaller value. 
𝑀𝑐𝑟 = 𝐶𝑏𝑀𝑐𝑟,0                                                                                    (4) 

𝐶𝑏 = 1.75 + 1.05 (
𝑀1

𝑀2
⁄ ) + 0.3 (

𝑀1
𝑀2

⁄ )
2

≤ 2.3                 (5) 

It was indicated by Suryoatmono (2002) that this 

equation appears in the 1986 edition of the American 

Institute of Steel Construction (AISC) code. Two versions 

of the EUMF have been presented by Ziemian (2010) with 

one of them being similar to equation (5). It is clarified 

here that the moment ratio (M1/M2), denoted by ‘𝜅’ in 

equation (6) is positive for double curvature and negative 

for single curvature. It was stated that these equations are 

applicable to linearly varying moments between brace 

points. This limitation is significant as in practice there are 

many cases where the bending moment will not vary 

linearly along the unbraced length.  

 

𝐶𝑏 = 1.75 + 1.05𝜅 + 0.3𝜅2 ≤ 2.56                                   (6) 

𝐶𝑏 = [0.6 − 0.4𝜅]−1 ≤ 2.5                                                   (7) 

It has been reported by Suryoatmono (2002) and 

Helwig et al. (1997) that Kirby and Nethercot (1979) 

presented an alternative equation for the EUMF which is 

applicable to both linear and nonlinear moment gradient 

diagrams between brace points. This equation is based on 

determining the maximum moment Mmax in the unbraced 

span as well as moment values at quarter points (A, B and 

C) along the beam. This equation can be found in the 1999 

versions of the AISC code in a slightly modified form as 

shown in equation (8).  

𝐶𝑏 =
12.5 𝑀𝑚𝑎𝑥

2.5𝑀𝑚𝑎𝑥 + 3𝑀𝐴 + 4𝑀𝐵 + 3𝑀𝐶

                               (8) 

Many studies have been conducted to improve the 

accuracy of the EUMF equation, in particular to consider 

load height effects (when load is not placed at shear 

centre) as well as end conditions. So called ‘quarter 

points’ equations such as Equation (8) have been studied 

by Wong and Driver (2010) who proposed an improved 

version of this type of formula. The EUMF formula 

presented in the South African steel design code as well as 

the handbook is based on equation (6) and given as 𝜔2 but 

with the limiting value given as 2.5 instead of the 2.56 

used here. It, therefore, appears that the South African 

design guides have not moved on from an equation meant 

for linearly varying bending moments to the more general 

‘quarter points’ approach. The current study only focuses 

on the equations provided in the South African design 

guide documents. 

 

MATERIALS AND METHODS 

 

In order to determine the moment gradient factor, the 

critical elastic buckling moment for the uniform moment 

case was first obtained (𝑀𝑐𝑟,0). The bending moment was 

then altered to a case that differs from the uniform 

moment case and the critical moment determined, (𝑀𝑐𝑟,𝑚). 

For example, a uniformly decreasing moment with 

maximum at one end and zero at the other end for the 

same length of the member. The ratio of the two moment 

values then gives the moment gradient factor as given in 

equation (9), with 𝜔2 being the moment gradient factor. 

        𝑀𝑐𝑟,𝑚 = 𝜔2 𝑀𝑐𝑟,0                                                         (9) 

Two sections were considered, one being an I-shaped 

monosymmetric section and the other being the stiffened 

beam which is the subject of the study. The I-section beam 

is studied to provide a comparison particularly because 

this member has been the subject of previous studies. The 

two different types of monosymmetric sections are shown 

in Figure 3 together with the geometric parameters used. 

For the Type 1 section, the upstand parameters in Figure 3 

(c) are set to zero. The critical elastic buckling moment 

was determined using equation (1) with the moment 

gradient factor given by equation (6) based on the code of 

practice (SANS 10162-1) section for design of doubly 

symmetric beams. The analytical results were compared to 

finite element analysis (details of this is missing) results. 

This comparison was done to verify whether using the 
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moment gradient factor for doubly symmetric sections for 

monosymmetric section behaviour predictions is a valid 

approach. The results are presented in tables and analysed 

to determine whether the use of the code equation gives 

safe or unsafe results for the section cases considered. 

 

 

 

 

 

 

 

 

 

 

 

           (a) Type 1 - MS   (b) Type 2 – MS                   (c) Geometric parameters 

Figure 3. Monosymmetric sections considered (a) and (b), and their geometric parameters (c) 

 

Sections considered 

The sections considered are shown in Table 1. 

Associated geometric properties based on Figure 3 (c) are 

given. An attempt was made to ensure that the members 

are compact so that they can attain the plastic moment, Mp. 

The initial slenderness parameter is given by: 

𝜆̅𝐿𝑇𝑖 = √
𝑀𝑝

𝑀𝑐𝑟
⁄                                                                              (10)  

 

Initial slenderness parameters for the beam when 

subjected to the uniform moment case are selected such 

that the beam is slender i.e. the slenderness parameter is 

greater than unity (the point at which the plastic moment 

would match the elastic moment). In the slender beams the 

critical elastic moment is the critical value and therefore 

the beams are always likely to suffer from a global lateral-

torsional buckling failure with no local buckling provided 

the plate elements are not slender. The degree of 

monosymmetry, 𝜌, is also considered for the selected 

members. This is given by equation (11). Member lengths 

vary as 𝜆̅
𝐿𝑇𝑖 varies. 

𝜌 =  
𝐼𝑦𝑡

𝐼𝑦𝑡+𝐼𝑦𝑏
                                                                            (11) 

 

with 𝐼𝑦𝑡 the second moment of area of the top flange 

and 𝐼𝑦𝑏  the second moment of area of the bottom flange 

about the y-axis of the section. The axis is shown in Figure 

3 (c) or Table 1 figures. 

 

Table 1. Members considered for study. 

Member Description 

Type - 1 

 

 

Beam: B / b H 𝑡1 𝑡2 𝑡𝑤 𝜌 

T1-1 150 / 75 400 10 8 5 0.91 

T1-2 150 / 132 400 10 8 7 0.65 

T1-3 100 / 75 250 8 5 4.5 0.79 

Type - 2 

 

 

 

Beam: B / b H 𝑡1 𝑡2 𝑡𝑤 𝑡𝛼 𝛼 𝜌 

T2-1 55/55 100 5.7 5.7 4.1 5.7 10 0.65 

T2-2 55/55 100 5.7 5.7 4.1 5.7 50 0.84 

T2-3 146/146 251 8.6 8.6 6 8.6 75 0.79 

*All dimensions in (mm) 

 
Finite element analysis model 

The software Abaqus (which version) was used for 

the finite element analysis to determine linear elastic 

critical buckling loads. The finite element model was 

calibrated against benchmark problems whose closed form 

analytical solution was available based on uniform 

moment loading. The boundary conditions were applied 

for the simply supported case with warping of the flanges 

allowed to occur freely. Rotation of the section was 

prevented at the end supports. These boundary conditions 

are shown in Figure 4 with Ui being the restrained 

displacement component. The longitudinal restraint Uz is 

applied at one end only (non-roller support end). A mesh 

convergence study was conducted to determine the 

optimum mesh size. An element size of 10 mm was found 

to give sufficiently accurate results and was adopted for 

the study. 
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RESULTS 

 

Results for the two beam types for different beam 

slenderness and degree of monosymmetry values are 

presented in Tables 2 to 4. A typical buckled configuration 

of a monosymmetric beam is shown in Figure 5. The 

degree of monosymmetry was high for T1 and 

intermediate for T2 in the initial iteration given in Table 2. 

These were then interchanged for the study results 

presented in Table 3. The degree of monosymmetry for T2 

could not be increased too much as this could result in 

slender stiffeners. The results show that the moment 

gradient factor from the design guides produces acceptable 

estimates for the single curvature bending case. However, 

once the member is in double curvature the accuracy of 

the moment gradient factor start to alter. The change is, in 

some of the observed cases, unconservative making this 

particularly undesirable. 

  

 

 

Table 2. Results for Beams T1-1 and T2-1 for three moment gradient cases (FEM vs applied SANS 10162 code equation) 

  

Table 3. Results for Beams T1-2 and T2-2 for two moment gradient cases (FEM vs applied SANS 10162 code equation) 

 
 

Table 4. Results for Beams T1-3 and T2-3 for three moment gradient cases (FEM vs applied SANS 10162 code equation) 

 
 

Sketch of BMD

Mcr (kNm) 228.3 133.6 87.3 230.8 132.5 85.9

1.75 1.80 1.81

Mcr (kNm) 17.8 10.1 6.5 18.2 10.5 6.8

1.82 1.80 1.80

Mcr (kNm) 178.7 123.2 90.6 310 177.9 115.4

1.37 1.66 1.88

Mcr (kNm) 24.4 13.7 8.7 24.4 14.1 9.2

2.49 2.45 2.42

Mcr (kNm) 74.8 52.5 40.3 329.8 189.3 122.8

0.60 0.70 0.80

Mcr (kNm) 22.9 13.6 8.9 26.0 15.0 9.8

2.34 2.43 2.47
T2-1

2.50
0.65

FEM Code

1.75

2.50
T1-1 0.91

T2-1
1.75

T1-1

T1-1
2.35

T2-1
2.35

0.91

0.65

0.91

0.65

𝜆̅
𝐿𝑇 = 1.22 𝜆̅

𝐿𝑇 = 1.61 𝜆̅
𝐿𝑇 = 2.00 𝜆̅

𝐿𝑇 = 1.22 𝜆 ̅
𝐿𝑇 = 1.61 𝜆 ̅

𝐿𝑇 = 2.00

𝜔2

𝜔2

𝜔2

𝜔2

𝜔2

𝜔2

𝜌

M

M

0.5M

M

M

Sketch of BMD

Mcr (kNm) 319.5 185.4 120.2 312.4 179.4 116.2

1.80 1.83 1.83

Mcr (kNm) 32.3 18.0 11.4 31.2 17.8 11.6

1.78 1.80 1.78

Mcr (kNm) 403.5 246.7 162.9 419.5 240.9 156.0

2.28 2.43 2.48

Mcr (kNm) 42.3 24.1 15.1 41.8 24.0 15.5

2.35 2.41 2.36

FEM Code

T1-2 0.65
1.75

T2-2 0.84
1.75

T1-2 0.65
2.35

T2-2 0.84
2.35

𝜆̅
𝐿𝑇 = 1.22 𝜆̅

𝐿𝑇 = 1.61 𝜆̅
𝐿𝑇 = 2.00 𝜆̅

𝐿𝑇 = 1.22 𝜆̅
𝐿𝑇 = 1.61 𝜆̅

𝐿𝑇 = 2.00

𝜔2

𝜔2

𝜔2

𝜔2

𝜌

M

M

0.5M

Sketch of BMD

Mcr (kNm) 83.4 48.0 31.1 86.8 47.1 30.4

1.80 1.83 1.83

Mcr (kNm) 250.9 144.9 92.7 240.8 138.3 89.6

1.80 1.82 1.82

Mcr (kNm) 98.4 60.7 40.7 116.6 63.2 40.9

2.13 2.31 2.39

Mcr (kNm) 320.6 193.9 126.0 323.4 185.6 120.3

2.30 2.44 2.48

Mcr (kNm) 55.4 36.2 25.9 124.0 67.3 43.5

1.20 1.38 1.52

Mcr (kNm) 237.3 154.1 107.5 344.0 197.5 128.0

1.70 1.94 2.11

FEM Code

T1-3 0.79
1.75

T2-3 0.79
1.75

T1-3 0.79
2.35

T2-3 0.79
2.35

T1-3 0.79
2.50

T2-3 0.79
2.50

𝜆̅
𝐿𝑇 = 1.22 𝜆̅

𝐿𝑇 = 1.61 𝜆̅
𝐿𝑇 = 2.00 𝜆̅

𝐿𝑇 = 1.22 𝜆 ̅
𝐿𝑇 = 1.61 𝜆 ̅

𝐿𝑇 = 2.00

𝜔2

𝜔2

𝜔2

𝜔2

𝜔2

𝜔2

𝜌

M

M

0.5M

M

M
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Figure 4. Boundary conditions in the finite element model 

 

 
Figure 5. Buckling mode for a monosymmetric beam 

(Beam Type – 2) 

 

 
Figure 6. Critical elastic moment trend for code equation 

and finite element method (FEM) output 

 

In the undesirable cases, the moment gradient factor 

from design guide equations produces critical moments 

that are greater than those predicted by the finite element 

models. Also, the moment gradient factor appears to 

change as the length of the member changes. This makes it 

particularly challenging to develop a single moment 

gradient factor. This is a challenge that has been noted by 

Knobloch et al. (2020) who are involved in developing the 

next generation of the Eurocodes. It is noted that the Type 

2 section has a lower sensitivity than the Type 1 section 

for the cases where the loss in accuracy of the moment 

gradient factor was observed. However, it is seen that for 

results in Tables 2 and 4, in general once the member is in 

double curvature there is evident loss of accuracy in 

moment gradient factor predicted by the equation that is 

provided in the code SANS 10162-1 for doubly symmetric 

sections. This is illustrated in Figure 6. 

These results indicate that the implied guidance in the 

Steel design handbook can produce unconservative results 

for some monosymmetric sections subjected to linear 

moment gradients between points of restraint that cause 

double curvature bending. It is important that when 

monosymmetric sections are used in cases involving 

double curvature bending between points of restraints, the 

critical elastic moment and subsequently member strength 

are determined for each particular case. A generalised 

moment gradient factor based on doubly symmetric 

sections should not be used. The ‘Wagner effect’ 

associated with monosymmetric sections can have an 

effect on monosymmetric sections when they are subjected 

to double curvature bending. This is due to the change in 

transverse torques arising from longitudinal stresses when 

the compression and tension flanges swap along the 

unrestrained length.  

The difference in behaviour between the Type 2 and 

Type 1 sections in some of the observed cases might be 

due to the relative position of the shear centre in relation to 

the centroid. For the Type 1 section the shear centre 

position will always be above the centroid for the degree 

of monosymmetry above 0.5. For the Type 2 section it has 

been shown by Mudenda and Zingoni (2018) that the shear 

centre initially moves above the centroid but at a certain 

upstand height it reaches a peak height and then starts to 

move back down even meeting the centroid again. This 

gives a monosymmetric section that has a coincident shear 

centre and centroid at a given upstand height. The shear 

centre then moves below the centroid as the upstand height 

increases. This shear centre movement can counteract the 

adverse effects of the negative bending part of the double 

curvature and hence may reduce the sensitivity of this 

particular cross section. A more extensive parametric 

study still needs to be carried out to confirm these initial 

observations.  
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CONCLUSION 

 

The current study has shown that using the moment 

gradient factor developed for doubly symmetric sections 

on monosymmetric sections subject to lateral-torsional 

buckling, and subjected to double curvature from linear 

moment gradient between points of restraint can produce 

unconservative predictions. For both beam types 

considered the design code equation for moment gradient 

factor produced similar outcomes as those from finite 

element analysis models for the single curvature case.  For 

the case of double curvature there was generally a 

noticeable deviation from code equation predictions for 

some cases. It appears that in certain cases such as results 

from Table 4, beam type 1 showed more sensitivity in 

deviating from code predictions than the type 2 beam. 

Factors leading to this behaviour still need to be 

investigated further. It is, however, clear that there are 

some cases for which the code equation would produce 

unconservative predictions. It is recommended that for 

monosymmetric sections experiencing double curvature 

due to linear moment gradients between points of restraint 

the critical buckling loads must be determined for each 

particular case. The use of moment gradient factors that 

were developed for doubly symmetric beams must be 

avoided for these cases. 

 

Selected symbols 

G - Shear modulus  

𝑀𝑐𝑟  – Critical elastic buckling moment       

𝑀𝑝  – Plastic moment 

𝛽 – End Moment ratio        

𝐶𝑏 , 𝜔2 – Equivalent uniform moment factor/ Moment 

gradient factor 

𝐼𝑥 , 𝐼𝑦  – Major and minor axis second moment of area 

E - Elastic modulus 
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