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ABSTRACT: Accurate estimation of suspended sediment load carried by a natural river is important for 

river engineering and water resources projects.  In recent years, using  smart systems to increase accuracy of 

estimating of river sediments are common. In this study were used the Genetic Expression Programming 

(GEP) in order to estimate suspended sediment load in Sistan River.  Root mean square error (RMSE), mean 

bias error (MBE) and determination coefficient (R
2
) statistics are used for evaluating the accuracy of the 

models. GEP is found that scenario 3 with four function and RMSE=0, MBE=2.69×10
-4

, R2=1 in train 

period and RMSE=0, MBE=2.4×10
-4

 and R
2
=1 in test period are superior in estimating suspended sediment 

load as the best accurate model. The modeling approach presented in this paper can be potentially used to 

reduce the frequency of costly operations for sediment measurement where hydrological data is readily 

available.Also estimation of suspended sediment load using other AI methods such as Particle Swarm 

Optimization, Tabu Search in Sistan River are suggested.  

Keywords: Genetic Expression Programming (GEP), Artificial Intelligence (AI), Statistic Indicators, 

Suspended Sediment Load. 
 

INTRODUCTION  

 

Data mining consists of the extraction of novel, 

useful and understandable knowledge from observed 

data. Artificial Intelligence (AI) techniques are being 

used in a wide variety of data mining applications. They 

are being used as regression and classification. The 

problem of regression is usually described as a process 

of induction of a data model of the system that will be 

capable of predicting responses of the system that have 

yet to be observed (Velickov and Solomatine, 2000; 

Zhou et al., 2002). 

Predictions of some hydraulic variables such as 

the suspended sediment load are highly needed for the 

design of most hydraulic structures and river engineering 

plans. 

Correct estimation of suspended sediment loads in 

streams is important for river engineering. All surface 

water reservoirs are designed to a volume known as “the 

dead storage” to accommodate the sediment income that 

will accumulate over a specified period called the 

economic life. The underestimation of sediment yield 

results in insufficient reservoir capacity. To achieve an 

appropriate reservoir design and operation it is 

mandatory to determine sediment yield accurately. In 

environmental engineering, if the particles also transport 

pollutants, the estimation of river sediment load has an 

additional significance (Guven and Kişi, 2011).  

McBean and Al-Nassri (1988) examined the 

uncertainty in suspended sediment curves and concluded 

that the practice of using sediment load versus discharge 

is misleading because the goodness of fit implied by this 

relation is spurious. Instead of suspended sediment 

curves, they have recommended that the regression can 

be established between sediment concentration and 

discharge. 

Artificial Intelligence (AI) systems are being used 

in a wide variety of simulation applications. The focus of 

this paper is evaluating mathematical function effects of 

genetic expression programming (GEP) for suspended 

sediment load modeling. Gene expression programming 

(GEP) is, like genetic algorithms (GAs) and genetic 

programming (GP), a genetic algorithm as it uses 

populations of individuals, selects them according to 

fitness, and introduces genetic variation using one or 

more genetic operators. The fundamental difference 

between the three algorithms resides in the nature of the 

individuals: in GAs the individuals are linear strings of 

fixed length (chromosomes); in GP the individuals are 

nonlinear entities of different sizes and shapes (parse 

trees); and in GEP the individuals are encoded as linear 

strings of fixed length (the genome or chromosomes) 

which are afterwards expressed as nonlinear entities of 

different sizes and shapes (Ferreira, 2001). 

GP (Koza1992) has been applied to a wide range 

of problems in artificial intelligence, engineering and 

science applications, industrial, and mechanical models, 

but LGP has been rarely applied in engineering and 

science area. GP can be successively applied to areas 

where (1) the interrelationships among the relevant 

variables are poorly understood (or where it is suspected 

that the current understanding may well be wrong), (2) 
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finding the size and shape of the ultimate solution is hard 

and a major part of the problem, (3) conventional 

mathematical analysis does not, or cannot, provide 

analytical solutions, (4) an approximate solution is 

acceptable(or is the only result that is ever likely to be 

obtained), (5) small improvements in performance are 

routinely measured (or easily measurable) and highly 

prized,(6) there is a large amount of data, in computer 

readable form, that requires examination, classification, 

and integration (such as molecular biology for protein 

and DNA sequences, astronomical data, satellite 

observation data, financial data, marketing transaction 

data, or data on the World Wide Web) (Banzhaf et al., 

1998). 

It was observed that only a few studies existed in 

the literature related to the use of GP and GEP in the 

field of river engineering and water resources 

engineering. Babovic et al. (2001) applied GP to 

sedimentary particle settling velocity equations.  Harris 

et al. (2003) studied on velocity predictions in compound 

channels with vegetated floodplains using GP. Dorado et 

al. (2003) studied on prediction and modeling of the 

rainfall-runoff transformation of a typical urban basin 

using artificial neural networks (ANNs) and GP. 

Giustolisi (2004) determined Chezy resistance 

coefficient in corrugated channels by using GP.   

Rabunal et al. (2007) determined the unit 

hydrograph ofa typical urban basin using GP. Only two 

studies were observed for sediment modeling using GP 

approach; Babovic (2000) used experimental flume data 

utilized by Zyserman and Fredsoe (1994) and expressed 

a new formulation forbed concentration of suspended 

sediment. Kizhisseri et al. (2005) used GP methodology 

to explore a better correlation between the temporal 

pattern of fluid field and sediment transport by utilizing 

two datasets; one from numerical model results and other 

from Sandy Duck field data.  

The purpose of this study is to develop a 

mathematical model for estimation of suspended 

sediment load based on GP. Aytek and Kişi (2008) 

develop an explicit model based on genetic 

programming. Their research’s results indicated that the 

proposed GP formulation performs quite well compared 

to sediment rating curves and multi linear regression 

models and is quite practical for use. Cobaner et al. 

(2009) is compared the potential of neuro-fuzzy 

technique with those of the three different artificial 

neural network technique. The comparison results shown 

the neuro-fuzzy models perform better than the other 

models in daily suspended sediment concentration 

estimation for the particular data sets. Azamathulla et al. 

(2010) used GP to predict bridge pier scour, and Singh et 

al. (2010) estimated the mean annual flood in Indian 

catchments by using a tree-based version of genetic 

programming: M5 tree model. Only three studies were 

observed for sediment modeling using GP approach. 

Kisi and Guven (2010) estimated suspended sediment 

concentration in two stations in USA using LGP. 

The main purpose of this paper illustrates the 

mathematical functions effects in estimation of 

suspended sediment load using GEP in Sistan River, 

Iran. To achieve this goal, as well as used easily 

accessible metrological parameters. 

 

MATERIALS AND METHODS 

Location of the study area 

Sistan plain area is 15000 Km
2 and locates in 

north of Sistan and Baloochestan province of Iran and 

has 2 cities, 6 parts, 6 townships and 937 villages. Its 

population estimated about 420000 persons in 2008 

which half of them work in agricultural and 

domesticated fields. Climate of region evaluated totally 

dry. Mean annual precipitation is 52.3 mm and in fully 

rain years this rate reaches to 120 mm rarely and in dry 

year there is no precipitation (such as 9 mm for water 

year 2001-2002). This little precipitation makes 

impossible any kind of dry farming. Even regional 

natural vegetations, seldom grow, if do not locate near 

ground water. In this condition only an external water 

resource could make alive region and Hirmand Trans 

Boundary River has such role. Totally could say 

environment of Sistan is very vulnerable and depends on 

Hirmand River (Najafi and Vatanfada, 2011). 

Hirmand River is an evident example of a flow of 

endorheism from an endorheic region. After passing a 

distance of about 1100 km, The river is divided into two 

main branches of Paryan Moshtarek and Sistan at a place 

called Jarikeh bordering Iran and Afghanistan. As one of 

two main branches of the Hirmand River, Sistan River is 

the main source of water in Sistan which is responsible 

for 70 percent of irrigated farmland in Sistan plain. The 

general slope of the river is about 0.2- to 0.6-thousandt. 

Important structures such as channel feeder, Kohak dam, 

Zahak-Niatak flood barrier, Zahak dam, Hedris canal, 

Sistan dam, Nohoorab Bridge and numerous irrigation 

channels, several villages and also the city of Zabol are 

located along the river, each of which has a significant 

impact on hydraulic process of the river. Sistan River is 

rare among the world's rivers because concentration of 

the suspended load of the river’s flood flow varies 

mainly from 10 to 50 grams per liter. Low slope of the 

Sistan River’s bed makes it prone to sedimentation; and 

on other hand, the negative effects of building Zahak and 

Kohak dams have sparked and increased the 

sedimentation. The particles forming the riverbed are 

very fine, and are mostly in the range of fine sand, clay 

and silt. The average diameter of particles forming the 

bed is about 0.02 mm (Torabi et al, 2001). Figure 1 

shows overview of the position of Sistan and its River.  
 

 
Figure 1. Position of Sistan region and plan of   

Sistan River 
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Review of aerial photographs and satellite images 

of Sistan River plan in two intervals since 1956 show 

that the meanders of Sistan River have a lot of changes 

due to the construction of longitudinal and transverse 

structures, erosion and other similar natural process, and 

have created several deltas in some cases. These changes 

also now continue with the relocation, increase or 

sometimes reduction of sandy islands. For the reasons 

mentioned above and therefore the reduction of water 

flow and increase of the amount of sedimentation in the 

riverbed, these natural and permanent changes have 

intensified the speed of these developments.  

 

Sediment rating curve 

Whereas comprehensive data for river/stream 

flow are often readily available, measurements of 

suspended sediment concentration are commonly not of 

such high spatiotemporal resolution, making direct 

correlation problematical. The interpolation method most 

commonly employed to obtain high-resolution estimates 

for sediment loads is the so called rating curve, which is 

based on the close relationship between stream flow and 

sediment load (Einstein, 1943; Cohn et al., 1992; Phillips 

et al., 1999). A rating curve consists of a graph or 

equation relating sediment discharge or concentration to 

stream discharge, which can be used to predict sediment 

loads from the stream flow record. The sediment rating 

curve generally represents a functional relationship of 

the form: 

Qs= aQ
b
                                                          (1) 

In which Qs is suspended sediment discharge 

(ton/day), Q is stream flow (m
3
/s), and a, b are 

coefficients estimated by means of logarithmic linear 

regression between log Qs and log Q for a particular site. 

However, the rating curve method has several 

disadvantages, such as poorness of fit due to the 

common lack of frequent sediment sampling at gauging 

stations (Miller, 1951). Also, for improved fitting of the 

sediment rating curve, it is better that the data be 

normally distributed (Thomas, 1988), which is rarely the 

case. 

Overview of Gene Expression Programming 

Gene expression programming (GEP) is, like 

genetic algorithms (GAs) and genetic programming 

(GP), a genetic algorithm as it uses populations of 

individuals, selects them according to fitness, and 

introduces genetic variation using one or more genetic 

operators (Mitchell, 1996). The fundamental difference 

between the three algorithms resides in the nature of the 

individuals: in GAs the individuals are linear strings of 

fixed length (chromosomes); in GP the individuals are 

nonlinear entities of different sizes and shapes (parse 

trees); and in GEP the individuals are encoded as linear 

strings of fixed length (the genome or chromosomes) 

which are afterwards expressed as nonlinear entities of 

different sizes and shapes (i.e., simple diagram 

representations or expression trees).The flowchart of a 

gene expression algorithm (GEA) is shown in Figure 2. 

 

The interplay of chromosomes (replicators) and 

expression trees (phenotype) in GEP implies an 

unequivocal translation system for translating the 

language of chromosomes into the language of 

expression trees (ETs). The structural organization of 

GEP chromosomes presented in this work allows a truly 

functional genotype/phenotype relationship, as any 

modification made in the genome always results in 

syntactically correct ETs or programs. Indeed, the varied 

set of genetic operators developed to introduce genetic 

diversity in GEP populations always produces valid ETs. 

Thus, GEP is an artificial life system, well established 

beyond the replicator threshold, capable of adaptation 

and evolution. 

The advantages of a system like GEP are clear 

from nature, but the most important should be 

emphasized. First, the chromosomes are simple entities: 

linear, compact, relatively small, easy to manipulate 

genetically (replicate, mutate, recombine, transpose, 

etc.). Second, the ETs are exclusively the expression of 

their respective chromosomes; they are the entities upon 

which selection acts and, according to fitness, they are 

selected to reproduce with modification. During 

reproduction it is the chromosomes of the individuals, 

not the ETs, which are reproduced with modification and 

transmitted to the next generation. 
On account of these characteristics, GEP is 

extremely versatile and greatly surpasses the existing 

evolutionary techniques. Indeed, in the most complex 

problem presented in this work, the evolution of cellular 

automata rules for the density-classification task, GEP 

surpasses GP by more than four orders of magnitude. 

  

 
Figure 2. The flowchart of GEP, adapted from Mitchell, 

1996. 

 

Data normalization 

One advantage is to avoid attributes in greater 

numeric range s dominating those in smaller numeric 

ranges, and another advantage is to avoid numerical 

difficulties during the calculation. It is recommended to 

linearly scale each attribute to the range [0.1, 0.9], [− 1, 

+1] or [0, 1]. In the modeling process, the data sets of 
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maximum and minimum temperature, streamflow, and 

suspended sediment load were scaled to the range 

between 0 and 1 as follow: 

minmax

min

xx

xx
N i

i





                                      (2) 

 

where Ni is the normalized value, xi is the original 

data and xmin, xmax are, respectively, the minimum and 

maximum of the original data. 

 
Error functions 

Measures of goodness of fit between observed 

and predicted datasets are based on the coefficient of 

determination, R
2
, as well as the three measures defined 

below: 

– Root mean squared error (RMSE): 

t

OP

RMSE

t

i

ii




 1

2)(

                                  (3)

 

 

– Mean bias error (MBE): 

t

OP

MBE

t

i

ii




 1

)(

                                     (4)
 

 

where Pi and Oi are the simulated and observed 

values respectively, and t the sample size. R
2

 each vary 

between 0 and 1; the closer the values are to 1, the better 

is the goodness of fit. Goodness of fit improves as the 

RMSE approaches 0, and as the MBE decreases. 

 

 

RESULTS AND DISCUSSION 

 

Rating Curve 

One of the most common methods for estimating 

of suspended sediment load is using sediment rating 

curve in rivers. This curve typically is defined as an 

exponential relationship between water flow and 

sediment discharge (Qs = a.Q
b
). 

The seasonal and annual sediment rating curves 

were plotted. The seasonal “a” and “b” coefficients and 

R2 values have been shown in Table 1. Sediment rating 

curve diagram for spring, summer, fall, winter and also 

annual sediment rating curves are shown in Figure 3, 

respectively. The annual sediment rating curve with 

a=13.85 and b=1.574 is allocated to the highest 

determination coefficient (R
2
=0.787). 

The statistical parameters of the streamflow and 

sediment data for the river station are given in Table 2. 

In the table, the xmean, Sx, Cv, Csx,xmax and xmin denote the 

mean, standard deviation, coefficient of variation, 

skewness, maximum and minimum, respectively.  

 

Table1. Seasonal a, b and determination coefficients for 

sediment rating curve 

Season a b R2 

Spring 7.619 1.686 0.783 

Summer 14.79 1.515 0.694 

Fall 35.8 0.852 0.338 

Winter 9.469 1.809 0.783 

Annual 13.85 1.574 0.787 

 

 

 

Table 2. The Statistical parameters of data set for the Sistan River station (1996-2012) 

 
 

Period 
No. of 

data 
Data Type Xmean Sx 

Cv 

(Sx/Xmean) 
Csx Xmax Xmin Xmax/Xmin 

Spring 207 

Flow (m3 s-1) 62.56 71.37 1.14 2.48 488.59 1.44 338.59 

Sediment (ton day-1) 22435.30 58842.84 2.62 5.50 577483.22 31.88 18115.93 

Summer 81 

Flow (m3 s-1) 6.15 5.31 0.86 2.62 34.45 0.28 123.03 

Sediment (ton day-1) 757.56 3058.75 4.04 7.51 26119.70 1.71 15275.33 

Fall 65 

Flow (m3 s-1) 6.62 6.75 1.02 2.02 32.50 0.20 166.67 

Sediment (ton day-1) 692.19 2491.27 3.60 5.47 16202.51 2.98 5430.46 

Winter 222 

Flow (m3 s-1) 23.98 35.46 1.48 3.23 227.60 0.52 440.23 

Sediment (ton day-1) 17752.86 56657.48 3.19 4.48 390899.81 1.98 197523.62 

Annual 576 

Flow (m3 s-1) 33.39 53.37 1.60 3.47 488.59 0.20 2505.59 

Sediment (ton day-1) 15115.82 50549.20 3.34 5.79 577483.22 1.71 337723.92 
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Figure 3. Seasonal and annual sediment rating curve in Sistan River

Gene expression programming 
In this study, 2315 data were used to estimate 

suspended sediment load. This data relating to be 1996 

to 2012 the Sistan River hydrometric station. Three GEP 

models were considered, based on three different types 

of inputs: (1) Q and Td, (2) Q, Tmin and Tmax, and (3) Q, 

Tmin, Tmax, Td and Qc, corresponding to scenario 1,  

 

scenario 2 and scenario 3, respectively (Table 3). Q, 

Tmin, Tmax, Td and Qc represent the stream flow, 

minimum temperature, maximum temperature, Tmax-Tmin 

and classified sediment flow, respectively.  

In each scenario, five series of arithmetic 

operators and mathematical functions were used to 

suspended sediment load modeling (Table 4). 
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Table 3. Combinations of input models in GEP 

scenarios 

Scenario Input combinations 

1 Q , Td 

2 Q , Tmin , Tmax 

3 Q , Tmin , Tmax , Td , Qc 

 

Table 4. Mathematic functions used for models in GEP 

scenarios 

Functions 

series 

arithmetic operators and basic 

mathematical functions 

A + . - , * , / 

B + . - , * , / , Exp(x) 

C + . - , * , / ,  

D + . - , * , / , Exp(x) , ln(x) ,  

E 
+ . - , * , / , Exp(x) , ln(x) ,  , Sin(x) , Cos(x) 

, Tan(x) 

 

Scenario 1 

In scenario 1, Q and Td are input and Qs is output. 

The results of five series of mathematical functions were 

analyzed using RMSE, MBE and R
2
 statistical 

indicators. In this scenario, the Gene expression 

programming model with set functions E, RMSE=0.04, 

MBE=1.26×10
-2

 and R
2
=0.74 has the best results (Figure 

4,a). Then function series D, A, C and B are the next 

priorities, respectively (Table 5). 

Scenario 2 

In scenario 2, Q, Tmin and Tmax are input and Qs is 

output. The results of five series of mathematical 

functions were analyzed using RMSE, MBE and R
2
 

statistical indicators. In this scenario, the Gene 

expression programming model with set functions D, 

RMSE=0.03, MBE=1.35×10
-2

 and R
2
=0.83 has the best 

results (Figure 4,b). Then function series B, C, A and E 

are the next priorities, respectively (Table 5). 

 

Scenario 3 

In scenario 3, Q Tmin, Tmax, Td, Qc are input and Qs 

is output. The results of five series of mathematical 

functions were analyzed using RMSE, MBE and R
2
 

statistical indicators. In this scenario, Qc much causal 

effect is evident, as regardless of mathematical functions 

used for scenario using each mathematical function 

series is a good solution. Therefore, Qc reduce 

mathematical parameters effects. In this scenario, based 

on statistical analysis, the Gene expression programming 

model with set functions A, RMSE=0, MBE=2.69×10
-4

 

and R
2
=1 has the best results (Figure 4,c). Then function 

series D, E, B and C are the next priorities, respectively 

(Table 5). 

Statistic indicators to help evaluating 

performance of different models are RMSE, MBE and 

R
2
. These statistic indicators can be valuable when the 

models to find which between observed values and 

predicted values are calculated.  According to RMSE, 

MBE and R
2
 values show a comparative advantage 

models. 

 

 

 

 

Table 5. Train and test results for GEP scenarios 

Scenario Functions 
Train  Test 

R
2
 RMSE MBE R

2
 RMSE MBE 

1.00 

A 0.73 0.04 1.55×10
-2

 0.54 0.02 8.87×10
-3

 

B 0.74 0.35 1.29×10
-2

 0.53 0.02 6.4×10
-3

 

C 0.73 0.04 1.61×10
-2

 0.46 0.02 1.01×10
-2

 

D 0.73 0.04 1.49×10
-2

 0.52 0.02 8.48×10
-3

 

E 0.74 0.04 1.26×10
-2

 0.45 0.02 6.67×10
-3

 

2.00 

A 0.82 0.03 1.48×10
-2

 0.56 0.02 9.65×10
-3

 

B 0.82 0.03 1.33×10
-2

 0.60 0.02 7.27×10
-3

 

C 0.82 0.03 1.41×10
-2

 0.53 0.02 9.46×10
-3

 

D 0.83 0.03 1.35×10
-2

 0.58 0.02 8.18×10
-3

 

E 0.81 0.03 1.41×10
-2

 0.58 0.02 8.23×10
-3

 

3.00 

A 1.00 0.00 2.69×10
-4

 1.00 0.00 2.4×10
-4

 

B 1.00 0.00 3.85×10
-4

 1.00 0.00 3.71×10
-4

 

C 1.00 0.00 5.44×10
-4

 1.00 0.00 4.27×10
-4

 

D 1.00 0.00 3.53×10
-4

 1.00 0.00 3.07×10
-4

 

E 1.00 0.00 3.83×10
-4

 1.00 0.00 3.65×10
-4
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a) 

 
b) 

 
 

c) 

 
Figure 4. The observed and predicted suspended sediment load in Sistan River, a: best model of scenario 1, b: best 

model of scenario 2, c: best model of scenario 3 

 

According to the results, square mathematical 

function plays affect role in estimation of suspended 

sediment load, but reduce its role with increasing other 

functions. Exponential function effect is more 

pronounced with increasing number of inputs in 

estimation of suspended sediment load, and can be said 

in scenario 1 with two inputs, had negative impact on 

final results.  

Increasing mathematical functions of the models 

are low inputs more effective than models that have a 

high number of entries. In other words, impact of 

increasing number of entries is less than increasing 

mathematical functions. 

According to the results, mathematical parameters 

effects in estimating of suspended sediment load is 

undeniable, but it is important to have a large impact 

when number of inputs is minimal. In any case, the 

influence of effective input parameters is much more 

than as mathematical functions.  

 

CONCLUSION 

 

This paper reports the evaluation of mathematical 

functions effects in estimation of suspended sediment 

load using genetic expression programming in Sistan 

River, Iran. 



 

To cite this paper: Z. Sheikhalipour and F. Hassanpour.2013. Estimation of Suspended Sediment Load Using Genetic Expression Programming. J. Civil Eng. Urban.,3 (5): 

292-299.  

Journal homepage: http://www.ojceu.ir/main/  

          299 

The model gives a practical and mathematical 

way for suspended sediment load estimation to obtain 

accurate results and encourages use of GEP in other 

aspects of water engineering studies. The suspended 

sediment estimates based on GEP models are compared 

sediment rating curves. The results obtained with GEP 

models are better than those obtained using the 

conventional rating curve and confirm the ability of this 

approach to provide a useful tool in solving specific 

problems in river engineering, such as suspended 

sediment load estimation. The results suggest that the 

GEP approach may provide a superior alternative to the 

sediment rating curve. 

In the present study, genetic expression 

programming that is a generalization of genetic 

algorithms was used for the explicit formulation of 

suspended sediment load by arithmetic operators and 

basic mathematical functions. Other optimization 

techniques such as Ant Colony, Artificial Fish Swarm, 

Bee Algorithm, Cuckoo Optimization Algorithm, 

Imperialist Competitive Algorithm, Particle Swarm and 

Tabu Search, may also be used for the derivation of 

formulas instead of genetic programming and their 

accuracies may be compared with each other.  
The last conclusion introduces designed GEP 

models to set of different functions to estimating 

the Sistan River suspended sediment load using 

multiple inputs. 
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