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ABSTRACT: In this paper, an independent robust modal PID control approach for seismic control of 

structures is proposed. First, state space equations of the structure are transformed into modal coordinates. 

Second, the parameters of the modal PID control are separately designed in a reduced modal space. To 

create a good trade-off between the performance and robustness of the modal controller, the modal feedback 

gain is determined using genetic algorithms. Then, the feedback gain matrix of the controller is obtained 

based on the contribution of modal responses to the structural response. Considering four earthquakes and 

twelve performance indices, the performance of the controller is investigated for an 11-story realistic 

building equipped with ATMD. Simulation results show that the proposed controller significantly performs 

better than the LQR in reduction of structural responses. Unlike the LQR, the proposed controller is able to 

significantly reduce structural responses in strong earthquakes at the cost of demanding a higher control 

force and external power. Furthermore, it maintains appropriate performance in dealing with model 

uncertainties. In addition, the proposed controller has several advantages over conventional modern 

controllers in terms of simplicity and reduction of required sensors to the number of controlled stories.  

Keywords: Seismic Control, Active Tuned Mass Damper, Modelling Error, Robust Control, PID 

Controller  
 

INTRODUCTION  
 

Structural control methods are modern strategies 

used to enhance the safety of structures and to improve 

the habitability of structures subjected to environmental 

dynamic load such as strong wind and earthquake loads. 

They can be classified as passive active, semi-active and 

hybrid control. A structure equipped with active, semi 

active or hybrid control system is called a smart 

structure. A smart structure consists of three physical 

components: sensors, actuators and a computer. The 

sensor measures the responses of controlled structures 

along the degrees of freedom and actuator applies the 

required control force. A control algorithm is also need 

to determine the magnitude of control force at any given 

time. The performance of a control device highly 

depends on the control algorithm applied to adjust 

control force. There are many strategies and physical 

systems in structural control. The common goal in them 

all is to minimize the effects vibrations on structures in 

real time (Fisco and Adeli, 2011a). 

Tuned mass dampers (TMDs) are the oldest 

passive control devices which have been developed to 

suppress structural vibrations from environmental 

disturbances (Yang and Soong, 1988). A TMD have 

fixed frequency and damping characteristics and can be 

used to tune only the fundamental frequency of a 

structure (Datta, 1996). Despite the emergence of nearly 

four decade-old system in practice, as a modern 

technology in vibration control of structures, TMD 

systems have several shortcomings. First, because of 

uncertainty in specification of structural model, it is not 

possible to estimate the fundamental frequency of 

vibration of a structure accurately. Second, this 

frequency changes during an extreme dynamic event, 

such as strong ground motion. Also, TMDs are effective 

in order to improve structural responses in narrow range 

of load frequencies (Fisco and Adeli, 2011a). 

One of the earliest approaches to active control of 

structures has been active tuned mass damper (ATMD). 

In a structure equipped with ATMD system, an actuator 

placed between the structure and TMD system applies a 

control force in real time to the structure.  ATMD system 

can significantly reduce the responses of structure; 

however, the demanded external control force may be 

extremely large for large or massive buildings. Several 

researches suggested semi-active tuned mass dampers 

(SATMDs) to cope with this issue. In this approach, a 

variable damping device, such as a magneto-rheological 

(MR) damper, is added to a TMD system to adjust its 

tuning capability in real time (Fisco and Adeli, 2011a). 

However, control algorithms developed for active 

control can directly be used for developing other control 

strategies such as semi-active and hybrid control. 

Therefore, despite some obvious problems in 

implementation of an active control strategy for 

buildings, the research in the area of active structural 

control is still continuing. Different control algorithms 

have been proposed to improve the performance of smart 

buildings. The most common control algorithms are 
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LQR, LQG, independent modal space control, sliding 

mode control, H2, and H∞ (Datta, 1996; Yang and Soong, 

1988; Sarbjeet and Datta, 2000; Ha, 2001; Fisco and 

Adeli, 2011b; Samali and Al-Dawod, 2003; Samali et 

al., 2004; Pourzeynali et al., 2007; Huo, 2008; Park and 

Park, 2012).  

Modeling errors may adversely affect the stability 

and performance of a control system (Gu et al., 2005). 

Un-modeled dynamics, neglected nonlinearities, model 

order reduction and variation of system parameters are 

the important sources of modeling errors in structures. 

Some of conventional control algorithms such as linear 

quadratic regulator (LQR) and linear quadratic gaussian 

(LQG), ignore modeling errors. Usually, these methods 

have good performance for nominal models; however, 

control objectives are not satisfied for actual systems. 

Therefore, these methods may be faced with numerous 

problems in practice and they cannot obtain pre-

specified control objectives. In recent years, considering 

the effect of modelling errors on vibration control of 

structures equipped with ATMD, many control 

algorithms have been proposed by several researches 

(Samali and Al-Dawod, 2003; Samali et al., 2004; 

Pourzeynali et al., 2007; Huo, 2008). 

By review of control algorithms used in 

industries, PID controllers are known as the most 

popular industrial controllers, Because of its remarkable 

effectiveness and simplicity of implementation. 

Although significant developments have been made in 

advanced control theory, according to the literature, 

more than 95% of industrial controllers are still PID 

(Tavakoli et al., 2006).Although this controller widely 

used in industrial control systems, there are few studies 

on using PID controller  for vibration control of 

structures. In order to control the vibration of the plates 

and beams using smart materials and control devices, the 

application of PID controllers have been studied by 

several researchers (Shen et al., 2000; Jung et al., 2004; 

Fung et al., 2005). Guclu (2003) used both an FLC and a 

PD controller to seismic control of an active control 

device in a 5-story structure. Moreover, he developed 

both a sliding-mode controller and a PID controller for a 

building equipped with ATMD system and evaluated 

performance of the proposed controller to Marmara 

earthquake (Guclu, 2006). Guclu and Yazici (2007) 

applied a PID controller for a nonlinear structural system 

and assessed its performance to Kocoeli earthquake. 

Also, they designed a fuzzy PID controller to control a 

15-story building equipped with ATMD system (Guclu 

and Yazici, 2009). According to the previous researches 

on the performance of PID controller on structural 

vibrations, the researches considered their proposed PID 

controller for only one earthquake, whereas during the 

lifetime of structures, different load disturbances may be 

imposed on structures. As different earthquakes have 

different frequency spectrums, there was no guarantee 

that a controller tuned to reject an earthquake could 

perform well in rejecting other earthquakes. Also, in 

these studies, the researchers have not paid attention to 

modeling errors and its effect on the performance of the 

proposed controller. Aguirre et al. (2011) suggested a PI 

controller to minimize the structural responses a 3-story 

building equipped with MR dampers. Etedali et al. 

(2013) developed optimal PD/PID controllers for seismic 

control of a benchmark isolated structure equipped with 

piezoelectric friction dampers. They demonstrated that 

PD/PID controllers performed better in terms of 

simultaneous reduction of the floor acceleration and 

maximum displacement of the isolator in comparison 

with the maximum passive operation and LQG methods. 

A key element in successful implementation of 

smart structure technology is an effective control 

algorithm to adjust the control forces to be applied to the 

structure. Because civil structures are large and complex 

and external dynamic loadings are unknown and varied, 

there are uncertainties in structural model and load 

disturbance. An effective control algorithm has to be 

robust and function under various dynamic conditions. 

As a result, an effective control algorithm has to be 

robust and function under various dynamic conditions. In 

this paper, an independent robust modal control 

approach based on the PID controller is presented. This 

strategy can prevent excessive trial and error designs in 

conventional modern control methods and simplify 

control process. Also, the proposed controller is able 

reduces the number of the required sensors of the control 

system to the number of controlled stories. Therefore, 

the proposed controller provided a simple control system 

with advantages in terms of reliability and cost compared 

with the conventional control modern methods such as 

LQR and LQG. The proposed controller is applied 

toward the active control of an 11-story realistic building 

equipped with ATMD. In numerical studies, four well 

known earthquakes and 12 performance indices are used 

to evaluate performance of the proposed controller. In 

order to survey sensitivity the proposed control to model 

uncertainties, the robustness of the controller has been 

demonstrated through the uncertainty in the parameters 

of the structure. . Furthermore, to assessment the 

performance of the proposed controllers, their results are 

compared with LQR controller.  

 

AN OVERVIEW OF PID CONTROL  

 
PID controller is a generic control loop feedback 

controller widely used in industrial control systems. 

Figure 1 shows a block diagram of closed-loop control 

for a single degree of freedom system. 

 
Figure 1.Block diagram of closed-loop control for a 

single degree of freedom system 

 
 G(s) is transfer function of the structural system 

and k(s) is the PID controller in S domain. y(t) is output 

of the plant which denotes response of the structure. 

Output of the controller is u(t), d(t)is load disturbance 

applied to the system, simulating an earthquake dynamic 

force, yref(t) is the reference value, which represents the 

desired feedback of the controller. Also, e(t) is the error 

vector, which is the difference between reference value 

and value of the output. In structural control, it can be 

assumed that yref(t)=0, therefore, e(t)=y(t). 
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The transfer function of a PID controller is given 

by Eq. (1). The control force vector, uPID(t), is 

determined using Eq. (2). Parameter t is duration of the 

occurrence of an earthquake. 

 

PID c d
i

(s) s
s

1
K = k (1+ + )


 (1) 

PID c d
i

d

d

t

0

1 e(t)
u (t)= k e(t)+ e(t)dt +

t




 
 
 

  (2) 

 

The Parameters of PID controller are proportional 

gain, kc, integral term, τi, and differential term, τd. 

Proportional gain takes an immediate corrective measure 

as soon as an error is detected; however, using only 

proportional controller a steady state error happens after 

a change in the load disturbance. Integral term can 

eliminate the steady state error. A disadvantage of 

integral action is that it tends to have a destabilizing 

effect. A limited amount of oscillation can be usually 

tolerated because of being often associated with a faster 

response. The derivative term tends to stabilize the 

closed-loop system and increase damping of the system. 

However, derivative action often leads to large control 

actions (Tavakoli, 2005). 

 

Seismic control of structures using pid 

controller  
Equation of motion of an n-degree-of-freedom 

linear structure subjected to earthquake ground 

acceleration  ẍg(t) is given by 

 

 g(t) (t) (t) x (t) 
.. .

M x + Cx + Kx Mr  (3) 

where M, C and K refer to n×n mass, damping 

and stiffness matrices, respectively. x(t), ẋ(t)and ẍ(t)   
are n ×1 displacement, velocity and acceleration vectors, 

respectively. Also, r=[1,1,…,1]
T
 is n × 1 seismic 

influence vector. When control force, u(t), are applied to 

the structure, the equation of motion can be written as 

 

g(t) (t) (t) x (t) (t)  
.. .

Mx + Cx + Kx Mr Du  (4) 

where D represents an n × nc location matrix of 

control forces and u(t ) is an nc × 1 control force vector 

of nc actuators. In the closed loop control of a structure, 

when velocity of a story is feedback, the proportional 

gain, integral term and differential terms of the PID 

controller modify damping, stiffness and mass of the 

structure, respectively. 

Considering Eq. (2), to determine control force of 

any controlled story, a sensor and two computational 

resources are required for measuring and computing 

displacement, velocity and acceleration of the story. The 

controlled story is the story which is equipped with 

actuator to apply control force to it. Therefore, the PID 

control force of actuator installed in the j-th story, uPIDj(t) 

, is given by Eq.(5). 

PIDj j j( )u (t) tG W  (5) 

where Gj is 1 × 3 feedback gain vector and Wj is 

3 ×1 feedback vector of controller in the j-th story. 

Considering Eq. (2), when velocity of a story is 

feedback, Gj and Wj are obtained as 

j j J J J

j

j c d I P D
i

1
[ 1 ]k G G G


  
 

G  

. ..
T

j jj j( ) [ ]t x (t) x (t) x (t)W  

(6) 

 

where 
jck ,

ji and 
jd present the proportional 

gain, integral term and the differential term of the PID 

controller of  the j-th story, respectively. Also, xj(t), 

ẋj(t)and ẍj(t) refer to displacement, velocity and 

acceleration of the j-th story, respectively. Considering 

Eq. (5), the control force vector of structure, u(t), is 

given by  

 

c c ( )(t) tu G W  (7) 

 

Where Gc is the nc × 3nc feedback gain matrix and 

Wc(t) is the 3nc × 1  feedback vector of the controller of 

structure. Considering Eq. (6), Gc and Wc(t) are 

expressed as 

 

C C C

C C

C I P D

C C( ) [ ]Tt (t) (t) (t)

 
 


. ..

G G G G

w x x x

 (8) 

 

where 
CI

G ,
CPG  and 

CDG are nc × nc matrices given 

by 

 

C 1 2 nc
I I I Idiag( , ,..., )G G GG

 

C 1 2 nc
P P P Pdiag( , ,..., )G G GG

 

C 1 2 nc
D D D D( , ,..., )diag G G GG  

(9) 

 

Also, xc(t), ẋc(t) and ẍc(t)  refer to nc × 1 

displacement, velocity and acceleration vectors of the 

controlled stories, respectively. 

 
Independent robust modal pid control 

approach  
A robust modal-PID control approach is 

developed for seismic control of structures in this 

section. This controller is a hybrid control algorithm 

combining PID controller with a control method based 

on modal space. This approach consists of two phases. In 

the first phase, n coupled equations of motion of an n-

degree-of-freedom structure are transformed into a set of 

n decoupled equations. They can be expressed as 

second-order models of structural modes in the modal 

coordinates. In the second phase, at first, parameters of 

the robust PID controller are separately determined for 

selected modes of structure using an optimization 

procedure based on genetic algorithms. Then, according 

to the contribution of the modal responses to the 

structural response, the gain feedback matrix, Gc, of 

control system is calculated. 

 

Phase 1 
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The equation of motion of the structure expressed 

in Eq. (4) is a set of n simultaneous differential 

equations, which are coupled by the off-diagonal terms 

in the mass and stiffness matrices. These equations can 

transform into a set of  n independent normal coordinate 

equations in modal space. For this purpose, it is assumed 

that the coordinate transformation in the modal space is 

based on Eq. (10). 

 

(t) (t)x Φy  (10) 

 

where y(t)=[y1(t), y2(t) ,…,yn(t)]
T
 is modal 

displacement vector and Φ is n × n orthonormalized 

mode shape matrix relative to the mass matrix. The 

results of this type of normalizing is the following 

relations 

 
T

T 2
1 2 n

T
m 1 1 2 2 n n

, diag( , ,..., )

diag(2 ,2 ,..., 2 )

  

     



 

 

Φ MΦ I

Φ ΚΦ Ω Ω

Φ CΦ C

 (11) 

 

where ωi and ξi are the natural frequency and 

modal damping ratio of the i-th mode. By using Eqs. 

(10) and (11), Eq. (4) can be described in the modal 

space as follows 

 

2
m g m

T(t) (t) (t) x (t) (t) 
.. .

y + C y +Ω y Φ Mr u  (12) 

 

where um(t) is the n × 1 modal control force vector given 

by   

 

T
m(t) (t)u Φ Du  (13) 

 

On the other hand, the modal control force vector, 

um(t), can be present as 

 

m m m( )(t) tu G W  (14) 

 

where Gm is the n × 3n modal feedback gain 

matrix and Wm(t) is the 3n × 1 modal feedback vector of 

the controller in the modal space. Considering the 

parameters of PID controller in each mode, Gm and 

Wm(t) are given by 

 

m m mm I P D

T
m m m m[ ](t) (t) (t) (t)

 
 


. ..

G G G G

w y y y

 (15) 

 

where 
mI

G ,
mPG  and 

mDG  are the n × n matrices, 

which are given by 

 

m 1 2 nI I I Idiag( , ,..., )G G GG
 

m 1 2P P P Pdiag( , ,..., )
n

G G GG
 

m 1 2 nD D D Ddiag( , ,..., )G G GG  

(16) 

 

Also, ym(t), ẏm(t)and ÿm(t) refer to the n × 1 modal 

displacement, modal velocity and modal acceleration 

vectors, respectively. Considering the term T
gx (t)Φ Mr in 

Eq. (12) as the load disturbance which must be applied 

to the structure, Eq. (12) can be written in the state space 

as follows  

 

m2
m

(t) (t) (t)
   

    
    

. 0 I 0
q q u

I-Ω -C
 (17) 

 

where q(t)=[y(t) ẏ(t)]
T
 is the modal state vector. 

Considering Eq. (17), the state space equation of the i-th 

mode of structure is given by 

 

.

mi mimi 2
i i i

0 1 0

12
(t) (t) u (t)

  

   
    

     

q q  (18) 

 

where qmi=[yi(t) ẏi(t)]
T
 is the modal state vector of 

the i-th mode. Also, the state space equation of the i-th 

mode expressed by Eq. (18) can be described in the 

frequency domain using a second-order model as shown 

in Eq. (19). 

2 2
i i i

1
g (s)

s 2 s
mi

  


 
 (19) 

 

Phase 2 
The second phase included two subsections. For 

second- order models corresponding to selected modes 

of structure, the parameters of modal PID controller are 

designed using optimization process. Then, according to 

the contribution of modal responses to the structural 

response, the feedback gain matrix is obtained.  

 

Tuning of modal PID parameters for second 

order models  
  The lower order modes of a structure subjected 

to seismic load usually are the greatest contribution to 

structural response. Therefore, it is reasonable to 

truncate analysis when the number of mode is sufficient. 

In other words, a control system can be designed in the 

reduced modal space. Equation (17) is a set of n 

decoupled modal state equations. By adopting only nmc 

(nmc<n) modal equations from Eq. (17), nmc independent 

state space equations are obtained. 

The relationship between the input and output of 

the controller in the i-th mode can be identified by Eq. 

(20). 

 mi mi miq (s) g (s)k (s)=  (20) 

 

where kmi(s) and qmi(s) are control force and 

output of the controller in the s-domain corresponding to 

the i-th mode, respectively. Considering Eq. (1), control 

force of the i-th mode in the s-domain, Kmi(s), is 

achieved as 

mi

mi

mi c d
i

k (s) 1 τ s
τ s mi

1
= k ( + )  (21) 

where
mick ,

mii and 
mid are proportional gain,  

integral term and differential term of the PID controller 

in the i- th mode of structure. 
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Considering Eq. (21) in the time domain, the 

control force in the i-th mode can be obtained as  

 

mi mi miu (t) (t)G W  (22) 

where Gmi is the 1 × 3 modal feedback gain vector 

and Wmi(t) is the 3 × 1 modal feedback vector of the 

controller in the i-th mode. These vectors can be given 

by determining parameters of the PID controller in each 

of the selected modes as follows 

mi mi mi mi mi

mi

mi c d I P D
i

mi mi mi mi

1
[ 1 ]

[ ]T

k

(t) y (t) y (t) y (t)




  
 


. ..

G G G G

w

 

(23) 

where ymi(t), ẏmi(t)and ÿmi(t) refer to  modal 

displacement, velocity and  acceleration of  structure in 

the i-th mode, respectively. 

There are many good regulation rules and 

strategies to determine parameters of the PID controller 

of a second-order model in the literature (Panda et al., 

2004; Skogestad, 2004). These strategies are able to 

provide both adequate set point regulation and 

appropriate load disturbance rejection in control 

processes. Numerical optimization techniques are useful 

and power tools for tuning of the PID controller for the 

second-order models. Among of optimization 

techniques, genetic algorithms (GAs) are able to handle 

complex problems and, therefore, have significantly 

broadened the scope of optimization. In contrast to 

conventional search techniques, GAs are capable of 

evolving multiple solutions simultaneously (Deb, 2001). 

Typically, two objectives should be considered to 

design an effective controller for seismic control of 

structures. The first objective is good load disturbance 

rejection. Earthquakes and strong winds are the load 

disturbances which may be apply to structures. An 

effective controller is also important to have good 

performance and robustness. The performance of 

controller can relate an acceptable level of structural 

responses and required control force. Also, a controller is 

referred to as robust if it is insensitive to model 

uncertainties. An appropriate trade-off between 

conflicting the performance and robustness of controller 

has to be provided. 

 

Load disturbance rejection 

Dynamic loads such as earthquakes or strong 

winds are random in general and not predictable. 

Considering seismic events as probabilistic events, it is 

required several time-history analyses to access reliable 

results. In stochastic analysis, spectral density function 

can be used instead of a collection of input time-

histories; therefore, the proposed controller employs 

stochastic analysis method for modeling earthquakes in 

the frequency domain. Ground artificial acceleration, 

used for modeling earthquakes, produced by a band 

limited Gaussian white noise known as filter models. To 

model the ground acceleration, one well-known filter 

was introduced by Kanai-Tajimi (1961). By considering 

several earthquakes, Nagarajaiah and Narasimhan (2006) 

introduced a modified form of Kanai-Tajimi filter and 

proposed to apply a white noise according to Eq. (24). 

The output of this filter simulates the earthquake. 

g g

2
g g g

g g

4 S
F(s)

S 2 S

2 , 0.3rad
s

 

  

  


 

 

 (24) 

 

Trade-off between performance and 

robustness of controller 

In this paper, parameters of the PID controller in 

each mode are determined using optimization procedure 

based on the genetic algorithms. The product of this 

process is determine of modal feedback gain vector, Gmi 

, for the i-th mode of structure. For this purpose, a 

suitable objective function must be defined to tune the 

parameters of controllers in each mode. In the proposed 

controller, the gain feedback matrix of control system is 

obtained based on the contribution of the modal 

responses to the structural responses of controlled 

structure, Therefore, the optimization problem is related 

to minimize modal structural responses. Additionally, 

the objective function must be referred to as finding the 

acceptable levels of control forces. Moreover, an 

effective controller must be robust. In other words, it is 

not sensitive to model uncertainties. Due to model errors, 

there is difference between frequencies and damping 

ratios of each mode of nominal structure and the 

corresponding values of actual structure. Therefore, the 

values cannot be accurately determined. A commonly-

used criterion to consider the sensitivity to modelling 

errors is the maximum sensitivity. The maximum 

sensitivity, Ms, is defined as inverse of the shortest 

distance from the Nyquist curve of the loop transfer 

function to the critical point. Ms is given by 

 

s
0 0

1
max S( ) max

1 g( )k( )
M j

j j 


    

 


 (25) 

 

Typical values of Ms are in the range of 1.2 to 2. 

A trade-off should be made between control goals. 

Smaller values of Ms  result in better robustness while 

larger ones lead to faster responses. A good balance 

between these confliction objectives is provided by 

setting the maximum sensitivity as equal to 1.6 

(Tavakoli et al., 2005, Astrom and Hagglund, 1995). 

  Considering the above-mentioned goals, the 

objective function applied to determine the parameters of 

PID controller in each mode can be expressed by Eq. 

(26) 

 

1

si

Min

S.t -1.6

m

i k k
K

I w I

M 0












 (26) 

 

where wk (k=1,…,m) are weighting factors. Ik 

(k=1, …, m) are normalized values of modal structural 

responses. The most important seismic response of 

structures is related to stories displacement, drift and 

acceleration, Therefore. Ik can be consist of the 

maximum modal displacement, drift and acceleration, as 

well as, the root mean square (RMS) of them in 

controlled second-order models normalized by them 

corresponding values in the uncontrolled second order 
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models. Moreover, they can be presented the maximum 

control force of second-order models normalized by the 

maximum base shear in the controlled second-order 

model and it RMS for access to a desirable level of 

control forces. The uncontrolled second-order model is a 

second-order model with no control force feedback. An 

important issue in robust control is to specify the class of 

alternative models. When the alternative models are 

specified, the next issue is how to design a control rule to 

access a robust controller. Many engineering 

applications have specific performance objectives which 

must be maintained while a penalty function penalizing 

deviations is not clearly defined; therefore, to take 

robustness issues into account, a penalty function is 

added to the objective function defined in Eq. (26), when 

the value of maximum sensitivity, MS is greater than a 

predefined value.  

 

Feedback gain matrix 

In this section, the feedback gain matrix, Gc, is 

determined. By formation this matrix, the control forces 

of actuators in real times can determine according to Eq. 

(7).  If only nmc modes of the structure is adapted to 

control of structure, Eqs. (13) and (14) can be rewritten, 

respectively, for nmc modes as follows 

 
T

mc mc(t) (t)u Φ Du  (27) 

 

mc mc mc(t) (t)u G W  (28) 

where Φmc is the n × nmc matrix of the selected 

nmc shape modes and umc is the nmc× 1 modal control 

force vector of the selected nmc modes. Also, Gmc is the 

nmc × 3nmc modal feedback gain matrix and Wmc(t) is the 

3nmc × 1 modal  feedback vector of the controller for the 

selected nmc modes.  

By determining parameters of the PID controller 

in each mode, Gmc and Wmc(t) are given by 

 

mc mc mcmc I P D

T
mc mc mc mc[ ](t) (t) (t) (t)

 
 


. ..

G G G G

w y y y

 (29) 

where 
mcIG ,

mcPG  and 
mcDG  are the nmc × nmc 

matrices given by  

 

mc 1 2 nmc
I I I Idiag( , ,..., )G G GG

 

mc 1 2 n mc
P P P Pdiag( , ,..., )G G GG

 

mc 1 2 n mc
D D D Ddiag( , ,..., )G G GG  

(30) 

 

Also, ymc(t), ẏmc(t) and ÿmc(t) refer to nmc × 1 

modal displacement, modal velocity and modal 

acceleration vectors of the selected nmc modes, 

respectively. The relationship between Wmc(t) and 

Wc(t)  can described by 
 

c mc( )t (t)W ΨW  (31) 

 

Where Ψ is a 3nc × 3nmc matrix which is given by  
 

 
 


 
  

φ 0 0

Ψ 0 φ 0

0 0 φ

 (32) 

where nc is the number of actuators ( the number 

of controlled stories) and φ is the nc×nmc matrix which is 

obtained through removing the rows corresponding to 

uncontrolled stories of the matrix Φmc. 

By substituting Eq. (7) in Eq. (27) and using Eq. 

(28), Eq. (33) is obtained. 
 

mc mc C C(t) (t)G W EG W  (33) 

 

where T
mcE Φ D  is the nmc× nc modal participation 

matrix. 

By substituting Eq. (31) in Eq. (33), feedback 

gain matrix of the controller is given by 
 

1 1
C mc

 G E G Ψ  (34) 

 

If nmc=nc, the inverse of matrices E and Ψ exist; 

but, if nmc nc, the physical gain matrix GC can be 

approximated by getting a pseudo-inverse of these 

matrices according to Eq. (35). 
 

1 1
mc mc c

C

mc mc c

if

if

n n

n n

 

 

 
 



E G Ψ
G

E G Ψ
 (35) 

Where 

 
T 1 T T T 1

mc c

T T 1 T 1 T
mc c

( ) , ( ) if

( ) , ( ) if

n n

n n

  


  

  
 

 

E E E Ψ Ψ ΨΨ
E

E EE Ψ Ψ Ψ Ψ

 (36) 

 

Finally, by substituting Eq. (36) to Eq. (35), the 

feedback gain matrix is obtained as follows.  

 
1 1

mc mc c

1 T T 1
C m mc c

T T 1 1 T
m mc c

if

( ) ( ) if

( ) ( ) if

T T

T

n n

n n

n n

 

 

 

 



 




E G Ψ

G E E E G Ψ ΨΨ

E EE G Ψ Ψ Ψ

 
(37) 

 

Figure 2 shows the block diagram of the proposed 

controller. 

 

NUMERICAL STUDIES 
 

In order to evaluate the performance and 

robustness of the proposed controller in reducing the 

structural response under earthquake loading, an 11-

story realistic building shown in Figure3 , studied by 

Pourzeynali et al. (2007), is considered.  

Structural parameters of the main structure are 

given by Table 1. Also, the classical damping matrix, C, 

is assumed to be proportional to the mass and stiffness 

matrices as 

 

2 2i i j i

i j i j

   

   
 

 
C M K  (38) 
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where ωi and ωj are the structural frequencies in 

the  i-th and j-th modes, respectively. Also, ξi and ξj are 

the structural damping ratios in the i-th and j
-
th modes, 

respectively.  

TMD installed on the top story, modeled by linear 

springs and linear viscous dampers. The natural 

frequency of the TMD was tuned close to the first modal 

frequency of the main structure with a frequency ratio of 

β. The mass of the TMD system was chosen to be α-

percent of total mass of the building and damping ratio 

of the TMD was considered to be ξ- percent of the 

critical value. The optimal values of the TMD mass, 

damping and frequency ratios are generated by the 

genetic algorithm. These values obtained to be about 3%, 

7% and 1.2, respectively. The optimum values of the 

ATMD are obtained by the genetic algorithm to be about 

3%, 7% and 1.0, respectively. 

In order to evaluate the simulation results, twelve 

performance indices, shown in Table 2, are divided into 

three categories: structural responses, control devices, 

and control strategy requirements. Performance indices 

J1 to J6, J7 to J10, and J11 to J12 are related to structural 

responses, control devices, and control strategy 

requirements, respectively. 

 The maximum displacement of the top story in 

the controlled structure normalized to its corresponding 

value in the uncontrolled structure is shown by J1. The 

uncontrolled structure is a structure with no control force 

feedback and control tools. On the other hand, the 

uncontrolled structure is the main structure equipped 

with the passive device, TMD, and the controlled 

structure is the main structure equipped with ATMD. 

Similarly, indices J2 to J4 represent the floors 

acceleration, stories drift, and base shear in the 

controlled structure normalized to their corresponding 

values in the uncontrolled structure, respectively. Indices 

J5 and J6 refer to values of the root mean squares (RMS) 

of the top story displacement and floors acceleration in 

the controlled structure normalized to their values in the 

uncontrolled structure, respectively. The maximum and 

RMS of the actuator stroke in the controlled structure 

normalized to the maximum and RMS of the top story in 

the uncontrolled structure, are shown by indices J7 and 

J8, respectively. Index J9 is the maximum control force 

generated by the actuator normalized by the total weight 

of the structure. Index j10 is presented to evaluate the 

required power to apply the control force. Index J11 is the 

total number of control sensors used for the control 

strategy. The number of required computational 

resources is given by index J12. In fact, it is the 

dimension of discrete state vectors required for the 

control algorithm. 

Two far-field (El Centro 1940 and Hachinohe 

1968) and two near-field (Northridge 1994 and Kobe 

1995) ground accelerations are selected to evaluate the 

proposed control strategy in different load disturbance. 

The absolute peak ground accelerations (PGA) of these 

earthquake records are 0.3417, 0.2250, 0.8267 and 

0.8178 g, respectively. 
In general, the nominal model is used for design 

conventional control system. Most often, the frequency 

of the first mode of the main structure has a dominant 

role in the dynamic response. Hence, a TMD/ATMD 

must be tuned for this frequency. Due to model errors, 

however, this frequency cannot be accurately 

determined. Also, this frequency changes during extreme 

dynamic events such as strong ground motions. Robust 

controllers are designed to function properly in the 

presence of bounded modeling errors or disturbances. In 

other words, it can also work well under a different set of 

assumptions although it designed for a particular set of 

parameters. To evaluate the robustness of the proposed 

controller in present to modeling uncertainty, the 

perturbation of story stiffness is treated for the example 

building. In this study, 15%  K  perturbation of story 

stiffness is assumed. 

 

 
Figure 2. Schematic block diagram of the proposed controller
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 Table 1 Parameters of the main structure 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 2 Performance indices 

 

Table 3.  Parameters of second- order models with corresponding controller ones for three modes of the studied structure

 

In this study, to determine the parameters of PID 

controller in each mode, the objective function is defined 

as 

 
7

1 1 2 2 3 3 4 4 5 5 6 6 7 7
1

si

Min

S.t -1.6

i k k
K

I w I w I w I w I w I w I w I w I

M 0




       







 

(39) 

where wk (k=1,…,7) are weighting factors. I1, I2 

are the maximum top story modal displacement and 

acceleration of controlled second-order model in the i-th 

mode normalized by them corresponding values in the 

uncontrolled second-order model. I3 is modal stories drift 

of controlled second-order model in the i-th mode 

normalized by its corresponding value in the 

uncontrolled one. Moreover, to evaluate the proposed 

controller based on required control resources, this, the 

non-dimensional performance indices I4, I5, I6 and I7 are 

defined. I4 is the maximum control force of second-order 

models normalized by the maximum base shear in the 

controlled second-order model. The RMS of the actuator 

Stiffness (N/m) Mass (kg) Stories 

4.68e8 
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J11 = Number of required sensors J12=Required computational resources  

rx =top story displacement; t = earthquake time; ^ = corresponding response quantity in the uncontrolled case; Tt 0 ; 

. =vector magnitude; f = floor number,1,… 11; 
fa =floor acceleration;

 fd =inter story drift;
 0V = base shear ; xr =RMS top 

story  displacement ; a =RMS floor acceleration; tx =actuator stroke ; xt =RMS  actuator stroke ; ATMDu = control force 

generated by actuator;
 
w=building weight ;

 
Pt=required power  and 

.

x = the maximum uncontrolled velocity of the levels 

relative to the ground. 

 Parameters of second-order model in the i-th mode 
 

Controller parameters in the i-th mode 

Mode i i  i  
miIG  miPG  

miDG  

i=1 5.804 0.050  405.079 7.6562 1.830 

i=2 7.390 0.050  82.368 1.743 0.837 

i=3 19.433 0.082  0.364 0.025 0.001 

Figure.3 The realistic building model equipped  

with the ATMD  
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displacement, actuator velocity, and actuator absolute 

acceleration of the controlled second-order model in the 

i-th mode normalized by them corresponding values in 

the uncontrolled second-order models are shown by I5, I6 

and I7, respectively. The required physical size of the 

actuator is evaluated by I5. Similarly, the required 

control power is assessed by I6. Also, the magnitude of 

the control force is evaluated by I7. 

The optimization problem can be turned into an 

unconstrained one considering the following equation 
 

6

1 1 2 2 3 3 4 4

5 5 6 7 8 s7 i+ 

i i i i i

i i i

I w I w I w I w I

w I w w MI Iw

    

 
 (40) 

 

In this study, w1=w2=20, w3=10, w4=100 and w5= 

w6= w7=5 are set. Thus, more attention is paid to the 

minimization of the maximum displacement and 

acceleration and demand control force. Also, w7=0 if the 

constraint in Eq. (39) is satisfied. Otherwise, it is set to 

be w8=100. The generation histories of optimization 

process for the first three modes are shown in Fig.4.  
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Figure 4. The generation histories of optimization 

process for the first three modes 

 

It can be seen that the convergence of the 

objective function has been achieved in 150 generations; 

however, all of the genetic operations is repeated up to 

about 400 iterations for obtaining the converged optimal 

solution. The Parameters of second-order models 

corresponding with these modes are listed in Table 3. 

Also, considering the result of optimization procedure 

based on GA for the first three modes, parameters of 

controllers for these modes of the studied structure are 

presented in this table. It is remarkable that the values of 

the control gains in the first mode are larger than the 

corresponding values in other modes. It means that the 

participation of higher modes to determine feedback gain 

matrix of controller control gains are less than that of 

fundamental mode of the structure. By tuning the 

parameters of PID controller in the controlled modes of 

the structure, the modal feedback gain matrix Gmc is 

given by Eq. (29). By substituting Gmc in Eq. (37), the 

feedback gain matrix of controller Gc is obtained. 

 

RESULT AND DISCUSSION  

 

The time history of the nominal structure is 

analyzed to evaluate the performance of proposed 

controller. The time history of the top story displacement 

and acceleration of the structure controlled by LQR and 

the proposed controller are compared with corresponding 

uncontrolled ones, as shown in Figs. 5 and 6 for El 

Centro earthquake. The uncontrolled structure is a 

structure with no control force feedback and control 

tools, namely the building equipped with TMD. 

Considering El Centro earthquakes, the time history of 

the required control force using LQR and robust modal 

PID controller are shown in Fig.7. Furthermore, 

compared with corresponding uncontrolled structure, the 

time history of the top story displacement and 

acceleration of the structure subjected to Kobe                             

earthquake controlled by LQR and the proposed 

controller are illustrated in Figs 8 and 9. Also, the time 

history of the required control force using LQR and 

robust modal PID controller for this earthquake are 

shown in Fig.10. It can be seen from Figs. 5, 6, 8, and 9 

that the proposed controller performs better in reducing 

displacement and acceleration of the top story than the 

LQR. Also it can be seen from Figs. 7 and 10 that the 

maximum required active control force for the proposed 

controller is about 635 KN while this value is 420 KN 

for LQR controller. These values are about 1419 and 

1526 KN in Kobe earthquake. 

In order to evaluate the performance and 

robustness of LQR and the proposed controller, the 

values of performance indices J1 to J10 are listed in 

Tables 4, 5, 6 and 7 for El Centro, Kobe, Hachinohe and 

Northridge earthquake, respectively. These values are for 

three structural models: nominal Model, perturbed model 

1 (δk=+0.15) and perturbed model 2 (δk=-0.15).
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Figure5. Comparison of time histories of top story displacement of the nominal controlled structure using LQR and 

proposed controller with the uncontrolled structure subjected to El Centro earthquake 
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Figure6. Comparison of time histories of top story acceleration of the nominal controlled structure using LQR and 

proposed controller with the uncontrolled structure subjected to El Centro earthquake 
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Figure7. Comparison of demanded control force of the nominal structure subjected to El Centro earthquake using LQR 

and proposed controller 
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Figure8. Comparison of time histories of top story displacement of the nominal controlled structure using LQR and 

proposed controller with the uncontrolled structure subjected to Kobe earthquake 
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Figure9. Comparison of time histories of top story acceleration of the nominal controlled structure using LQR and 

proposed controller with the uncontrolled structure subjected to Kobe earthquake 
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Figure10. Comparison of demanded control force of the nominal structure subjected to Kobe earthquake using LQR and 

proposed controller 

Table 4.  Performance indices of the Structural models subjected El Centro earthquake 

 
Table 5.  Performance indices of the Structural models subjected Kobe earthquake 

 

Table 6.  Performance indices of the Structural models subjected Hachinohe earthquake 

Table 7. Performance indices of the Structural models subjected Northridge earthquake 

 
It can be seen from simulation results that the 

proposed controller can reduce J1, the performance index 

related to the maximum top story displacement, more 

than the LQR in all earthquakes. Considering perturbed 

model 2, for example, J1 for LQR and robust modal PID 

controller are 0.81 and 0.69 for El Centro earthquake. It 

means that in comparison with the LQR, the proposed 

controller gives a reduction of 15%. Similarly, this 

reduction is 33%, 25% and 24%, for Kobe, Hachinohe 

and Northridge earthquakes, respectively. It is worth 

mentioning that LQR controller can reduce J5, the 

performance index related to the RMS of the top story 

displacement, better than the proposed controller in some 

earthquakes. 
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0.86 

0.71 

0.87 

0.68 

0.83 

0.87 

0.80 

0.74 

0.84 

0.82 

4.08 

5.29 

3.21 

5.13 

0.07 

0.07 

0.17 

0.29 

Perturbed model 1 

(δk=+0.15) 

LQR 

Robust modal-PID 

0.87 

0.67 

0.84 

0.70 

0.84 

0.67 

0.96 

0.78 

0.61 

0.65 

0.74 

0.75 

3.81 

5.57 

3.18 

4.85 

0.07 

0.06 

0.15 

0.30 

Perturbed model 2 

(δk=-0.15) 

LQR 

Robust modal-PID 

1.03 

0.69 

0.94 

0.73 

0.99 

0.72 

1.10 

0.86 

0.78 

0.86 

0.89 

0.89 

4.39 

6.27 

4.39 

7.11 

0.07 

0.10 

0.17 

0.37 

Models Controller J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 

Nominal model 

 

LQR 

Robust modal-PID 

0.83 

0.69 

0.81 

0.70 

0.92 

0.69 

1.03 

0.70 

0.80 

0.53 

0.72 

0.57 

3.90 

5.23 

2.85 

5.03 

0.01 

0.02 

0.04 

0.09 

Perturbed model 1 

(δk=+0.15) 

LQR 

Robust modal-PID 

0.92 

0.72 

0.91 

0.70 

0.94 

0.73 

1.01 

0.66 

0.52 

0.72 

0.58 

0.65 

3.71 

5.35 

2.80 

6.03 

0.01 

0.02 

0.04 

0.09 

Perturbed model 2 

(δk=-0.15) 

LQR 

Robust modal-PID 

0.87 

0.65 

0.93 

0.75 

0.96 

0.78 

1.07 

0.73 

0.50 

0.50 

0.62 

0.63 

4.16 

5.71 

2.99 

4.87 

0.01 

0.02 

0.05 

0.10 

Models Controller J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 

Nominal model 

 

LQR 

Robust modal-PID 

0.95 

0.74 

0.92 

0.79 

0.82 

0.70 

0.99 

0.74 

0.74 

0.76 

0.92 

0.79 

4.93 

6.41 

3.83 

6.31 

0.05 

0.08 

0.10 

0.19 

Perturbed model 1 

(δk=+0.15) 

LQR 

Robust modal-PID 

1.03 

0.76 

1.13 

0.76 

0.98 

0.73 

1.11 

0.73 

0.87 

0.81 

0.82 

0.83 

4.99 

6.71 

3.80 

6.81 

0.05 

0.07 

0.09 

0.20 

Perturbed model 2 

 (δk=-0.15) 

 

LQR 

Robust modal-PID 

0.96 

0.73 

1.07 

0.64 

0.93 

0.75 

1.02 

0.76 

0.86 

0.79 

0.88 

0.88 

4.71 

6.82 

3.82 

6.91 

0.05 

0.09 

0.11 

0.22 
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Simulation results show that the proposed 

controller performs better than LQR controller in 

reduction of J2 which related to the peak floors 

acceleration. Also, in comparison with LQR controller, 

the proposed controller performs better in reduction of 

J6, the performance index related to RMS of the absolute 

floors acceleration, in most earthquakes. Furthermore, 

considering J4, the performance index related to the 

maximum base shear, it can be seen that the base shear 

of the structure is decreased using the proposed 

controllers. 

Considering J3, it can also be seen that the 

proposed controllers are able to reduce maximum drift 

stories of the structures better than the LQR. Considering 

perturbed model 1, for example, this reduction is 11%, 

20%, 22% and 26%, for El Centro, Kobe, Hachinohe and 

Northridge earthquakes, respectively.  

Considering index J7 and J8, it can be observed that 

the proposed controller needs more physical space for 

the movement of ATMD. Also, considering index J9 and 

J10, it can be seen that the robust modal PID controllers 

demand higher control forces and external powers. In 

fact, the LQR in earthquakes with high PGA values, 

such as Kobe and Northridge cannot reduce structural 

responses well. However, the proposed controller is able 

to significantly reduce structural responses at the cost of 

increasing the required control force, stroke of the 

actuator and external power. 

Considering J1, J2 and J3 which are related to 

major structural responses in Tables 5, 6, 7 and 8 for 

perturbed models, it can be seen the proposed controller 

in present to modeling uncertainty has maintained its 

good performance. However, the performance of the 

LQR in reducing these responses has often been 

deteriorated.   

The last two criteria for assessing controllers are 

J11 and J12, the total number of control sensors used to 

control structure as well as the required computational 

resources. To determine the demanded control force by 

the LQR controller, it is needed to estimate the 

displacement, velocity and acceleration states. Therefore, 

one sensor and two computational resources are required 

for each degree of freedom of the structure. Hence, for 

the benchmark structure the values of J11 and J12 are 12 

and 24, respectively. To adjust the control force required 

for the proposed controller, it is needed to estimate 

displacement and velocity and acceleration of the top 

story. Therefore, the values of J11 and J12 are 1 and 2. As 

a result, because of the limitation in the number of 

required sensors for adjusting control force, the proposed 

controller is a simple control system for large structures 

in comparison with conventional modern control 

methods such as LQG and LQR. This means the 

proposed control strategy offers advantages in terms of 

reliability and cost. 

 

CONCLUSIONS 

 

In this paper, a robust modal-PID controller was 

developed for seismic control of structures. n coupled 

equations of motion of an n-degree-of-freedom structure 

were transformed into a set of n decoupled equations in 

the modal coordinates. For creating a balance between 

performance and robustness of the controller, the modal 

feedback gain of controller in the reduced modal space 

was designed using genetic algorithm. Then, based on 

the contribution of the modal responses to the structural 

response, the gain feedback matrix of controller of 

structure was obtained. The proposed controller was 

used for adjusting active control force of an ATMD 

installed on top story of an 11-story realistic building 

subjected to seismic excitations. Four earthquakes and 

twelve performance indices were taken into account to 

investigate the performance of the proposed controllers. 

To assess robustness of the proposed controller in 

present to modeling uncertainty, the perturbation of story 

stiffness is treated for the example building. 

 The simulation results showed that the proposed 

controller performed better than LQR in terms of terms 

of reduction of the maximum top story displacement, 

maximum stories acceleration as well as maximum 

stories drift. Furthermore, the simulation results 

demonstrated the LQR controller does not have a good 

performance in earthquakes with high PGA values, but 

the proposed controller is able to significantly reduce 

structural responses at the cost of demanding a higher 

control force and external power. Additionally, the 

proposed controller was not sensitive to modeling errors. 

On the other words, it was capable maintain a desired 

performance in dealing with uncertainties. One of the 

advantages of the proposed controller was that the 

controller required only one sensor and two 

computational resources to regulate control force of 

actuator in real time. Therefore, in comparison with 

conventional modern control, the proposed controller 

provided a simple strategy to adjust control force in tall 

building. It means that the proposed controller had 

superior in terms of reliability and cost. 
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