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INTRODUCTION 

 

A plate is defined as an engineering structure 

whose thickness is small compared with its other 

dimensions. Plates such as slabs are used in modern 

engineering structures to transmit lateral and or in-plane 

load to adjacent support. Plates are employed in 

engineering construction, building, civil engineering, 

hydraulic engineering, naval architecture and air-craft 

construction (Biot, 1972; Iyengar, 1988; Chajes, 1974). 

The classical method that leads to exact solution is not 

only rigorous and time consuming but proves in many 

cases quite laborious and almost impossible due to its 

mathematical difficulties (Gould, 1999; Fenner, 1986). 

The problems encountered in thin plate theory can be 

solved with the aid of various approximate methods such 

as energy method, finite element method, finite difference 

method and Fourier series (El Naschie, 1990; Vinson, 

1974). However, common problems are encountered. For 

example, numerical finite difference and finite element 

methods lead to an algebraic equation of large matrix size 

which requires large computer memories, thereby making 

the analysis cumbersome and time wasting. The static 

analysis of all round simply supported plates is made 

possible by levy (Timoshenko and Woinowsky, 1959). 

Nevertheless, the double trigonometric series involved in 

the method are not convenient for numerical 

computations especially when higher derivatives of the 

deflection function are involved. To overcome the 

mathematical difficulties and other shortcomings involved 

in the static analysis of all round simply supported thin 

rectangular isotropic plate  subjects to centre-point 

loading using both classical and numerical approaches, an 

energy method is employed in this study as a tool to 

estimate the numerical factors for deflection of all round 

simply supported thin rectangular isotropic plate. The 

algorithm involved is simple and straightforward. It is 

believed that research into the use of energy approach to 

static analysis of all round simply supported thin 

rectangular isotropic plate will enhance maximum 

utilization of plates as engineering structures.  

 

Derivation of energy equations of equilibrium  

When a system is in a state of static equilibrium, its 

total energy is minimum.  

 
0 T      (1)

    
For a body that behaves elastically, the potential 

energy can be written as: 

 

 
R st

siiT dUTWdR     (2)
      

Where: 

W= strain energy 

R = volume of elastic body 

Ti = ith component of surface traction 

Ui= ith component of deformation 

st =portion of the surface over which traction is 

prescribed. 

From equations (1) and (2), we have: 
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According to Timoshenko (1959), the strain energy 

in an elastic plate is given by: 
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The potential energy of applied load is given by: 
),( yxpwV      (5)

      
and the total potential energy of the system is given by: 

VUT       (6)

      

Substituting equations (4) and (5) into equation (6) gives: 
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Let   )().(.),( yxAyxw   (8) 

       

be the solution of equation (7) 

Where: 

 x = Represent x-coordinate 

 y = Represent y-coordinate 

A = coordinate defining the shape of the deflection 

surface 

Let 
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By differentiating, we have the following 

derivatives: 

For x – direction: 
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Likewise, for y – direction: 
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Figure 1. All round simply supported plate subjected to 

centre point loading. 

 

The boundary conditions are: 

   

    


















00

100

/
0

/

2

0

x

xx

l

ll





  (19)

      

At x = 0: 
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At x = lx: 
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Substituting equation (20) into (21) gives: 
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Substituting equation (20) and (23) into (21a) gives: 
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Substituting equation (20), (23), (24) into (22) gives: 
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Substituting equation (20) into (23) gives: 
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Substituting equation (25) and (24) gives: 
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Using equation (28), equations (9) and (10) become: 
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Similarly, 
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Substituting equation (29) and (30) into (8) we have: 
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Therefore, 
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Similarly, 
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Expansion of equation (32) gives: 
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Therefore, 
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Similarly, 



































45

5

44

4

53

3

52

2

543

3

42

2

4

2

2

2

2

2 44482241

25

3072

yxyxyxyxyyxyxxyx ll

x

ll

x

ll

yx

ll

yx

l

y

ll

x

ll

x

lll

xy
A

y

w  

44

24

63

23

62

22

6

2

65

6

64

6

55

5

54

4 424288

yxyxyxxyxyxyxyx ll

yx

ll

yx

ll

yx

l

x

ll

yx

ll

x

ll

yx

ll

yx


 









66

26

65

254

yxyx ll

yx

ll

yx      (36)

    

Applying the strain energy equation for thin rectangular 

isotropic plate, given as: 
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According to Gould [4], the third term in the strain 

energy equation is negligible for plates in which the plane 

form is polygonal and the edges remain straight. The 

strain energy equation above now reduces to: 
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Substituting the derivatives of equations (35) and (38) 

into (37) and integrating, gives: 
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Substituting equation (31) into (5) the potential energy V 

due to the external load becomes: 
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The total potential energy of plate is: 
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Substitution  of equation (41) into (8) yields: 
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Equation (42) gives the numerical factors for 

deflection of an all round simply supported thin 

rectangular isotropic plate given different values of span 

ratio: 

 

RESULTS AND DISCUSSION 
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at the middle when the point load is applied at the middle. 

Then we have 
2

,
2

yx
l

y
l

x   . 
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Table 1. Comparison of results of numerical factors 

 for deflection of a centrally loaded simply supported 

rectangular plate for various span ratio xy ll . 

xy ll  Energy method 

Levy’s method 

(Timoshenlo and 

Woinowsky-

Kriger, 1959) 

 ASS ASS 

1.0 
D

P090445243.0
 

D

P1856.0
 

1.1 
D

P097709199.0
 

D

P2024.0
 

1.2 
D

P10169793.0
 

D

P21648.0
 

1.3 
D

P103061746.0
 

D

P22696.0
 

1.4 
D

P10452055.0
 

D

P23744.0
 

1.5 
D

P10470192.0
 

D

P24432.0
 

  

The comparison of results of numerical factors for 

deflection of all round simply supported thin rectangular 

isotropic plate subjected to transverse point load using 

energy method are compared with those of the exact 

solutions (Timoshenlo and Woinowsky-Kriger, 1959) as 

shown in Table 1. From Table 1, it can be seen that the 

numerical factors for deflection increase as the span ratio 

increases which is in agreement with those levy 

(Timoshenlo and Woinowsky-Kriger, 1959) serving as 

the exact solution. The results obtained using energy 

methods are quite close to those of the exact solution. The 

disparity between the results obtained using energy 

method and those of levy serving as the exact solution 

may be attributed to the assumed polynomial function 

which is not too close to the actual deflection function as 

levy’s single trigonometric function is. Increasing the 

number of terms in the assumed polynomial function may 

yield better results. 

 

CONCLUSION 

 

From the study the following conclusions are 

drawn. 

 The deflection co-efficient increase as the span 

ratio increases in both cases. 

 The energy method produced results that are 

almost identical with those of levy’s showing the 

efficacy of the energy method in the 

determination of numerical factors for deflection 

of all round simply supported plates. 

 Even though energy method has proved to be an 

excellent approximate method for determination 

of numerical coefficients for deflection of all 

round simply supported plate, this study has 

proved that unsatisfactory results can be obtained 

if an unsatisfactory deflection function is 

assumed.  
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