
 

To cite this paper: R. Jani, M.A. Ghorbani, B. Saghafian, A. Shamsaei, B. Zahabion. 2013. Dynamic Characteristics of Monthly Rainfall in Tabriz under Climate Change. J. Civil 

Eng. Urban.3 (4): 225-235. http://www.ojceu.ir/  

225 

 
 

2013, Scienceline Publication 

Journal of Civil Engineering and Urbanism 

 

Volume 3, Issue 4: 225-235 (2013)              (Received: March 12, 2013; Accepted: June 26, 2013; Published: July 30, 2013)  ISSN-2252-0430 

 

Dynamic Characteristics of Monthly Rainfall in Tabriz 

under Climate Change 
  
Rasoul Jani

1*
, Mohammad Ali Ghorbani

2
, Bahram Saghafian

1
, Abolfazl Shamsaei

1
, Bagher zahabion

1 

 
1Department of Technical and Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran 
 2Department of Civil Engineering, Tabriz University, Tabriz, Iran 
 

*Corresponding author’s Email: soolni1979@yahoo.com 

 

ABSTRACT: Among the factors creating the changes in climate include ever-increasing population, 

changes in land usage and the development of industrial activities. Thus, studying the effect of this 

phenomenon on hydrological processes, in particular rainfall is considered as one of the most important 

issues concerning water engineering. Chaos theory is a tool that can be implemented besides other methods 

in modeling nonlinear, complicated hydrological phenomena like rainfall, due to its wonderful capabilities. 

In this study, monthly rainfall in Tabriz has been studied through this theory under historical and climate 

change conditions. In so doing, the statistical period of 1971 to the year 2000 was considered as the 

historical period, and the results obtained from the model LARS-WG were also considered under two 

scenarios in three future periods. The results indicated that historical period data having the fractal 

dimension of (5.96) has good chaotic nature. In the case of scenario A2, the data of all three series had good 

chaotic nature as well. In scenario B1, random investigation in all three periods will be appropriate.  
  

Keywords: Climate Change, Rainfall, Chaotic Theory, Tabriz, Lars-WG Model 
 

INTRODUCTION 

 

Today issues of climate change has led to temperature 

increase, floods, drought, thermal waves, melting of polar 

ice, Temporal and spatial changes of rainfall, disorders in 

hydrological balances and management strategies, 

however, researchers and managers of water resources 

didn’t ever expected such harsh impact of climate change 

on hydrological parameters, so in most studies the trend 

of changes in the data observed was also attributed to 

future, therefore, the role of climate change was not 

considered in the future predictions. As a result, it is 

necessary that the analysis of rainfall process be studied 

simultaneously with climate change issues, so that the 

realistic process of prospective changes in hydrological 

parameters and, in particular rainfall, would be accessed.  

In recent decades, chaotic theory, which is the 

basis and foundation of nonlinear dynamic systems, has 

caused a great revolution in how to understand and 

express phenomena. This theory deals with studying the 

systems appearing irregular at first glance, however, they 

are in fact, ruled by determined laws. These systems are 

very sensitive to the initial conditions (Williams, 1997; 

Sivakumar, 1999), in a way that the input which seems 

irregular is able to have a great effect on them. The 

systems like these are called chaotic systems.  

Concerning the analysis of the rainfall process, 

some researchers have carried out some several studies in 

recent decades. SivaKumar (2001) has studied the rainfall 

dynamics of Leaf River in Mississippi through chaotic 

theory in four different time stages. He has concluded that 

the data having higher Coefficient of Variation possess 

lower correlation dimension and vice versa. Kar Amuz, et 

al. (2009) carried out some studies concerning forecasting 

long-term rainfall through the implementation of 

statistical downscale and artificial nervous network. The 

results showed that the statistical sub-scale model 

(SDSM) was more effective than nervous network. 

Hashemi (2010) compared the two models SDSM and 

LARS-WG, in which both models had the same 

capability. Min Su Yang et al (2010) indicated that 

rainfall data in Peninsula located in Korea had optimal 

chaos with a suitable fractal dimension. Yang Mi Min et 

al (2011) evaluated CLIGEN model for the daily rainfall, 

and they also used T, F, K-S tests for evaluation. The 

results imply that model CLIGEN has an error equal to 

2.3 percent for the daily average and, therefore, it’s not 

suitable for long-term periods of return. 

Considering the importance of studying rainfall 

and the practicality of chaos theory in the analysis and 

prediction of this factor, Tabriz metropolis has been 

chosen as the case study. And the purpose of the present 

study is being aware of rainfall process in future with 

regard to climate change. 

 

METHODS AND MATERIALS 

 

LARS-WG model 

LARS-WG software or model is a kind of climatic 

generator which is based on series model that can be used 
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in simulating meteorology data in an individual station as 

well as the present and future climatic conditions 

(Semenov,1999;racsko et al,1999). This generator 

generates possible distribution parameters of climatic 

variables, and the data of climate change by accessing the 

relationship among them as well, by implementing the 

climate data observed in a given station. By randomly 

selecting the variables among suitable distributions, these 

sets of parameters are used to generate artificial series of 

time with the desirable length. 

LARS model uses a semi-experimental distribution 

to approximate to approximate probability distributions of 

dry and wet series, daily rainfall, minimum and maximum 

temperatures and solar radiation. The semi-experimental 

distribution is defined as a distribution function of 

collective probability. For any climate variable v, the 

climate variable vi Vs the probability pi is calculated 

through the following equation: 

  niPVVPVV iobsi ,...,0)(:min        (1) 

where P( ) is indicative of the probability gained 

through the data observed or {Vobs}. For any climate 

variables, the two Po and Pn are equal to 0 and 1 

respectively, they are constant with the relevant 

Vn=max{Vobs} and Vo=min{Vobs} (semonov and 

stratonovitch,2010) . 

 

Description of selected chaos models 

Chaotic behaviors reflect their internal processes in 

the time history of one of their single variables, normally 

referred to as time series, which may therefore bear 

external signals. A range of nonlinear dynamic methods 

have specifically been developed to identify chaotic 

behaviors mainly from time series and this study employs 

a number of them described below, including stochastic 

techniques. 

 

Phase space reconstruction  

Identification of the nature of dynamics of a real-

world system can be done by using the concept of phase-

space to characterize if a time series is stochastic, 

deterministic or in between. This is carried out by 

transforming a time series into the geometry of a single 

moving point, as if the time series is generated by a 

nonlinear dynamic system with m degrees of freedom. A 

popular method for identification of phase space of a time 

series was presented by Takens(1981).The method, 

commonly termed as delay-embedding, involves the 

construction of an appropriate series of state vectors, tY , 

correlated to observed values, which are discrete scalar 

time series,  Nt xxxX ,...,, 21  with N-observed 

values, with delay coordinates in the m -dimensional 

phase space: 

  )1(2 ,...,,,  mttttt XXXXY              (2)  

where   is referred to as the delay time and, for a 

digitized time series, it is a multiple of the sampling 

interval used, and m is termed the embedding dimension. 

The values of delay times are obtained as zero intercepts 

of ACF and values of the ACF evaluated by the TISEAN 

package (hegger et al,1999).Those systems whose 

dynamics can be reduced to a set of inherently 

deterministic behaviours, their trajectories converge 

towards the subset of the phase space, called the attractor. 

The reconstruction of phase-space by plotting Xt against 

)1(  mtX can show the presence of an attractor as a 

visual evidence for deterministic chaos in a given time 

series. 

 Mathematical approaches for the reconstruction 

of the phase space diagram of chaotic behaviors may be 

carried out by one of the following methods: (i) Auto-

Correlation Function, ACF, (ii) Average Mutual 

Information, AMI or Correlation Integral, CI (Fraser and 

Swinney, 1986). This study uses the ACF, defined as: 
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Where k  is autocorrelation function; E is a 

functional expression of expectation, x is the observed 

data. For each value of m there is a value of, k . Holzfuss 

and Mayer-Kress (1986) recommend the ascertainment of 

the value of delay time by displaying 
k  against m, and 

obtaining its value at its first zero crossing of the 

autocorrelation function. This method is selected in this 

study but Schuster(1988) recommends the value when 

ACF is 0.5 or when its value is 0.1(Tsonis and 

Elsner,1988). Behavior of the autocorrelation function 

k  as a function of m is indicative of the dynamics of the 

process controlling the time series. 

 After determining the values of m the phase-

space diagram may be reconstructed. The attractor is the 

geometric description of a single moving point by 

displaying tX  against )1(  mtX , for which the 

following outcomes are possible: (i) for a rather 

periodically regular behaviour, the attractor will be a 

well-defined closed shape; (ii) for stochastic processes, 

the attractor would look like a cloud of points; and (ii) for 

a deterministic chaotic behaviour, the attractor revolve 

around a recognisable closed curve but every now and 

then it would tend to get out of track.  

 

Correlation dimension method 

The correlation dimension method is one of the 

most widely used methods to determine the presence of 

chaos, and more specifically to distinguish between low-

dimensional and high-dimensional systems. For chaotic 

systems, the dimension is non-integer and low. The 

method uses the correlation function to determine the 

dimension of the attractor in the phase space. For an m-
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dimensional phase space the correlation function C(r) is 

given by (Grassberger and Procaccia,1983): 
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where H is the Heaviside step function, for 

ji YYru   and 0u , 1)( uH  and 0u , 

0)( uH  , N  is the number of points on the 

reconstructed attractor, r  is the radius of the sphere 

centred on 
iY  or 

jY . An attractor is represented by 

radius, r , and a non-integer fractal dimension, as follows: 
 

  2)(
D

rrC                                                   (5)  
 

where   is a constant; and D2 is the correlation 

exponent or the slope of )(ln rC  versus )ln(r  given 

by: 
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The behavior of 
2D  provides one technique for 

determining the presence of chaos in a time series, such 

that (i) for stochastic processes,
2D  , varies linearly with 

increasing m, without reaching a saturation value; (ii) for 

deterministic processes the value of 2D  saturates after a 

certain value of m. 

In this research, the paired model “atmospheric-

oceanic HadCM3” is used, whose data had existed since 

1961 to 2010, and all data had become normal according 

to the average (mean) and standard deviation of the data 

between 1961 to 1990. After data regeneration through 

the output of climatic model HadCM3, the predictions 

have been carried out in three time stages (2011-2039, 

2046-2065 and 2080-2099) based on the two scenarios of 

distribution “B1 and A2”. Scenario A2 predicts a world 

with a very fast economical growth, in which the world 

population reaches the highest level in the mid 21st 

century, and also in that world more effective and new 

technologies would emerge very rapidly. Scenario B1 is 

also showing a parallel and convergent world, the 

population situation of which is similar to scenario A2, 

however, there is a difference between them, i.e. the 

emphasis in scenario B1 would be more on using clean 

energy, and a sustainable environment and economics in 

the world.  

 

Area and the data used 

Tabriz is located in east Azerbaijan Province in 

Iran, at latitude 36° to 38° and 6 minute north, and also at 

longitude 48° and 10 minute east, having the average 

height of 1350 meters from sea level. The major reasons 

for the rainfalls in the area studied could be attributed to 

the systems generating rain, affecting the area 

alternatively which starts early in fall to mid-spring, 

causing rainfall there. The type of rainfall in Tabriz is 

almost Mediterranean. According to the statistics 

provided by a synoptic station, the maximum rate of 

annual rainfall is 412.8 mm, with an average of 213.2mm. 

The data concerning rainfall, solar radiation and daily 

temperature between the years 1971 to 2000, located in 

the synoptic station in Tabriz, have been selected as the 

basic data. The statistical features of daily and monthly 

data- concerning rainfall- used have been shown in Table 

1. 

 

Table 1. statistical feature of data series in monthly and 

daily rainfall in the primary period (1971-2000) 
 

Statistical features Daily Monthly 

data number 10958 365 

Average (mm) 0.748 22.42 

standard deviation 2.56 21.51 

Coefficient of Variation 3.42 0.96 

Max (mm) 63 134.6 

Min (mm) 0.0 0.0 

SKEW 6.58 1.628 

 

 

RESULTS AND DISCUSSIONS 

 

Regenerating the climatic data based on the two 

scenarios B1 and A2 

Different levels of performing the task with LARS-

WG model can be divided to two separate groups. The 

first step (analysis) is known as “calibration level”. In this 

level the statistical tests are implemented to evaluate 

capability of the model. Statistical test include: 

Kolmogrov-Smirnov test (KS) is used to compare 

probabilities distributions, test t to compare averages and 

test F to compare standard deviation. Tables 2, 3 and 4 

show the quantity of these statistics and the relevant 

probabilities respectively. 

Each test calculates one statistic and its relevant 

probability, indicating that two data distributions 

observed and produced may be the same. If the quantity 

of this probability is less very low and less than the 

significant level, (which is considered 0.01 or 0.05 in 

general), the equality of the climate simulated and 

produced, and the real climate will be improbable. 

Therefore as it appears from the probability quantities in 

the tables mentioned above, LARS-WG model has 

significant ability in producing daily rainfall distribution 

in different months and average quantities of monthly 

data as well. Furthermore, the generation of standard 

deviation quantities (i.e. the way data are distributed upon 

average quantities) having 5 percent probability are 

acceptable except for August and December. The lowest 

rainfall in Tabriz occurs in August in summer, and as a 

result, it’s not of high significant. Figure 1 confirms the 

truth about what was mentioned above. The chart 

concerning rainfall amount observed and produced by the 

model match well in all months of the year, and also this 

matching is better in months having more rainfall than 

those having less.  
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After the ability of LARS model was known due to 

the results in the previous part, the second step 

(production) starts, and then future climatic scenarios are 

produced through generating daily data in future periods. 

 
 

 
Figure 1. Diagram of average amount observed and 

generated rainfall in Tabriz station in period 1971-2000 

 

Chaos acceptance (delay time, embedding 

dimension and correlation dimension) 

Figure 2 the delay time opposed to autocorrelation 

function of the data generated and observed shows 

Scenario A2. The delay time for the data observed is 2 

months. Delay time indicates a real physical mechanism 

in rainfall dynamics, which is literally not known yet. By 

so doing, they reflect a physical correlation. Significant 

and logical delays in correlation functions determine the 

continuity of time, which may, in turn, be related to the 

scale or fractal behavior in rainfall process. 

Autocorrelation function has oscillation randomly, and 

the potential of this fluctuation decreases with an increase 

in time delay, until it trend to zero. Exponential 

descending of autocorrelation function, and in fact the 

delay time’s being large may be a sign of chaotic behavior 

(Sivakumar and Bemadtsson, 2000). 

In these series the first stage of scenario A2 may 

have a better chaotic nature compared to the others. 

Autocorrelation function shows the time cycle in all 

series, however, it’s unable to distinguish chaotic 

behavior from random behavior. 

Once the above-mentioned levels were performed 

for scenario B1, the delay time and embedding dimension 

for the two scenarios B1, A2 are summarized in table 5. 

The embedding dimension calculated for the data 

observed is 11 months. 

 

 

    

Figure 2. Delay time for autocorrelation dimension of data observed and climate change under scenario A2 

 
Table 2. results of the test of Klomogrov Smirnov (KS) for daily rainfall distribution observed and generated by LARS-WG 

MONTH JAN FEB MAR APR MAY JUNE JULY AUG SEP OCT NOV DEC 

KS 0.049 0.03 0.05 0.025 0.046 0.135 0.137 0.124 0.296 0.056 0.075 0.04 

Probable 1 1 1 1 1 0.976 0.973 0.99 0.221 1 1 1 

 

 
Table 3. comparison of the average data in the monthly rainfall observed and generated by LARS-WG 

MONTH JAN FEB MAR APR MAY JUNE JULY AUG SEP OCT NOV DEC 

Average (observed) 21.73 20.77 36.42 48.68 45.23 18.23 4.93 3.30 7.41 23.38 27.93 24.77 

Average (generated) 25.88 22.78 36.60 49.20 46.43 20.16 9.78 7.70 6.92 21.70 26.38 25.97 

t -1.09 -0.60 0.01 -0.35 -0.15 -0.44 -1.69 -1.70 0.20 0.28 0.40 -0.24 

Probable 0.28 0.55 0.99 0.73 0.88 0.67 0.10 0.10 0.84 0.78 0.69 0.81 
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Table 4. Comparison of standard deviation in monthly rainfall data observed and generated by LARS-WG 

MONTH JAN FEB MAR APR MAY JUNE JULY AUG SEP OCT NOV DEC 

Standard deviation 

(observed) 
9.64 11.89 18.23 25.41 26.89 20.09 7.74 5.23 9.54 16.85 21.73 22.76 

Standard deviation 

(generated) 
12.15 13.49 21.02 17.99 24.65 18.7 10.2 11.96 11.8 15.47 13.94 12.23 

F 1.12 1.21 1.07 2.017 1.049 1.305 1.847 4.417 1.532 1.732 1.853 3.988 

Probable 0.76 0.61 0.85 0.064 0.897 0.478 0.104 0 0.256 0.145 0.102 0 

 

 

 

Table 5. Delay time and embedding dimension for three future periods under scenario A2, B1 

 

2080-2099 2046-2065 2011-2030 Period 

B1 A2 B1 A2 B1 A2 Scenarios 

2 1 1 2 2 3 Delay Time (Month) 

7 7 8 5 9 4 
Embedding Dimension  

(month) 

 

 

Finally, following finding delay time and 

embedding dimension, it’s time to draw a diagram of 

phase space construction. A real phase space is one in 

which two different variables are brought about opposed 

to each other. But in chaotic theory, only a pseudo phase 

space is used, in a way that one physical feature opposing 

itself is drawn with the time delay. Figure 3 illustrates the 

phase space of historical data and the first period of the 

two scenarios B1 and A2, having a delay time. The phase 

space diagram tries to show the presence of attraction in 

each series of data. However, it is possible that the 

presence of one or some extreme phenomena, distorts the 

presence of this attraction in phase space construction, 

and also the intensity of these extreme phenomena is 

distinguishable in phase space diagram. The existence of 

attraction is a sign that dynamic chaos exists in the series 

of data, and as it is obvious in Fig.3, scenario B1 has a lot 

of extreme phenomena; that is why less attraction is felt 

here. And naturally its chaotic behavior exists. In general, 

the correlation dimension is the most effective method for 

distinguishing chaotic dynamics behavior from random 

dynamics. 

 Figure 4a shows the diagram of changes in log 

C(r) Vs log (r) in the data observed. Due to the presence 

of noise in data, for any small amount of log(r), some 

oscillations are seen in the diagram(Ng et al,2007). But a 

flat section in log(r) limited part observed in data being 

between 1.25 to 1.60, in which the quantity of 

logC(r)/log(r) reaches a constant level; the scaling could 

be selected here. In order to determine the correlation 

dimension, and studying acceptability of chaos in data, 

the slope of the curves is calculated using the method of 

minimum squares which are in the distance 1.25 to 1.60 

from log(r); and also for each quantity r in the distance 0 

to -1, logC(r) is calculated, and the results are depicted in 

Figure 4b.  

In this Figure, the quantities of the slope or 

correlation dimension, in other words, are shown for 

different quantities of the embedding dimension in the 

two distances mentioned. Correlation dimension starts to 

saturate opposed to embedding dimension. Saturation size 

indicates the fixed quantity of correlation dimension, 

which is 5.96 for the data observed, and this is a sign that 

nonlinear chaotic dynamics exists. 

But the issue which is of great importance includes 

selecting the venue considered, in which the area shows 

its complete chaos. If this area is not selected correctly, 

the chaos dynamics may not be seen in these series. A 

series of data is noted to clarify the issue, where different 

conditions appeared through the selection of cross-section 

(Figure 5a). The diagram of correlation function and 

radius r shows the first level of scenario A2. Five cross-

sections have been selected to find correlation dimension 

in this figure. The cross-section starts from number 1 

close to convergent point and continue toward number 5 

to become concave. The correlation dimension gained in 

this cross-section is shown in correlation power diagram 

in Figure 5b. As it seems in this figure, all three states of 

deterministic dynamics, chaos and random can be seen. 

But it is hard to determine which of these states would be 

established for the series of data of the scenario under 

discussion. However, what is definite, is that first of all 

cross-section selected must not be in the threshold trend 

to zero (logC(r)). So with these conditions the 

deterministic dynamics state and semi-deterministic one 

wouldn’t be correct. Secondly the cross-section selected 

should not be so far that might, otherwise, be placed in 

intense oscillation limit. And as it is seen is diagram No.5 
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the slope has intense changes once saturated, and this is 

not right. And also the farther it goes from convergent 

point {logC(r)=0}, oscillations become intense; 

consequently various slopes would appear in the diagram 

of this cross-section. The correlation dimension lines 4 

and 5 are very close to one another, and so in this portion, 

data series have completely reflected their chaotic nature. 

But the cross-section 4 matches better with the conditions 

of the selected area of cross-section. 

 

 

 

   
Figure 3. Behavior state in monthly rainfall of Tabriz with a delay of one month for data observed and the first period of 

scenarios 
 

 
 

b a 

  
Figure 4. a) The diagram concerning the relationship between correlation function C(r): a radios are with an increase in m. 

b) Diagram of correlation dimension changes with an increase of embedding dimension for the data observed in monthly 

rainfall of Tabriz 

 

 

 In general, in a portion where the series have 

chaotic behavior, the quantity of correlation dimension in 

various cross-sections wouldn’t so different from the 

others. Finally, the two cross-sections 3 and 4 are 

supposed to be the best cross-section, in which they 

suggest two completely opposite behavior in the portion 

(1.19‹log(r) ‹1.44). For better understanding the 

conditions governing the series of data, it’s necessary that 

the number of embedding dimensions increase so that the 

changes trend of cross-section 3 would be restudied. In 

such cases where the adjacent venue clearly shows chaos, 

often the slope of cross-section 3 makes an effort to make 

itself closer to saturation behavior through increasing the 

embedding dimension, and thus it’s natural that the 

quantity of correlation dimension would increase too. In 

such a state, it can be said that in the cross-section 

mentioned, there is a dynamic chaos. However, the 

complexity of these series of data is more than normal, 

and it has a little tendency to be random; in other words 

random chaos exists. 

In Fig.5c the embedding dimension has increased 

to 35. Once the embedding dimension is increased, the 

rate of slope in cross-section 3 moves very slowly toward 

saturation and almost gains saturation in correlation 

dimension 8.40, but it is not a full saturation. These 

conditions are known as random chaos. On the other 

hand, since the adjacent venue has fully reached 

saturation and shown a completely chaotic behavior, so in 

the whole system, chaotic nature is dominant over random 

nature. As a result, the entire diagram with a correlation 

dimension of 4.82 is considered chaotic. Cross sections 1 

and 2 move like previous trend, in parallel with the 

embedding dimension axis. State No. 4 keeps going 

showing the saturation limit, some changes are just at 

times seem in the slope which are the result of the 

oscillations available at the end of the diagram of Figure 
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5a. In state No.5, if the embedding dimension is more 

than 20, log (r) will be negative; otherwise, like the state 

No.4, after gaining a little slope, the saturation quality is 

shown by oscillations. Before drawing the diagram of 

correlation exponent, the chaos of date series is somewhat 

determined through the embedding dimension lines on the 

diagram logc (r)/log (r). Therefore, once the changes of 

line distances are significantly decreased, they are 

symptomatic of being chaos, and if the distance changes 

are little, the stochastic conditions in the data series will 

exist. 

But in the case of deterministic dynamics it is 

believed that if the close cross-sections are selected as the 

convergent point, then the diagram of correlation 

exponent often shows deterministic dynamic state. To 

show deterministic state, the assertion is made only if the 

deterministic state reaches in some cross-sections. In the 

cases where the deterministic dynamics occur, the size of 

the dimension is usually between zero and one. Once the 

selected cross-sections change, the maximum correlation 

dimension reaches, which is equal to two, and this shows 

that at most two principal variables would be necessary to 

solve data series under deterministic dynamic conditions. 

 

 

 

Figure 5. a) Diagram concerning relationship between correction function C(r) with an increase in m. b) Diagram of changes 

in correlation dimension with an increase in embedding dimension for the data series from first period in scenario A2 to 

embedding dimension m=20 in 5 cross-sections . c) Diagram of changes in correlation dimension for the data series from 

scenario A2 to embedding dimension m=35 in 5 cross-sections 

 

 

 

5 4 3 2 1 Number section 

chaotic chaotic stochastic 
Semi deterministic 

Semi stochastic 
Deterministic Embedding Dimension=20 

#4 4.82 non #2.4 0.54 Correlation Dimension 
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In order to determine the present conditions as well 

as correlation dimension, the above-mentioned stages 

would be carried out for the other data series concerning 

climate change, as shown in fig.6, and the variables of 

their correlation dimension are listed in table 6. 

Casting another glance at figure 6 and table 6, you 

find that almost all three periods reach saturation in 

scenario A2, and this shows a chaotic condition. The 

quantity of correlation dimension of all three periods is 

nearly around 5, which means the number of variable 

dominant in this scenario would be 5 or 6, and here 

number 5 is more concentrated. In scenario B1, all three 

periods show stochastic behavior until m=20 and if 

embedding dimension increase until m=30, the first 

period does not reach saturation and the stochastic 

behavior is completely clear. But the second and third 

period reach saturation, however, the rate of correlation 

dimension is very high, showing a very complicated 

chaotic behavior. Prediction with a high correlation 

dimension would be very weak. The quantity of 

correlation dimension is around number 10, and then, at 

the very least, 10 variables will be necessary to solve 

nonlinear dynamics. The complexity of issue is more than 

normal limit, in a way that the analysis of this issue will 

be realistic with a stochastic behavior. So, in general, the 

behavior of scenario B1 can be discussed stochastically.  

In this research two scenarios have been discussed, 

and in both cases, they predict a rapid economical growth. 

But scenario B1 considers a clean energy and a safe 

environment. Using clean energy in the coming years may 

sound wise for the developed countries, while this issue is 

completely different for the developing and third world 

countries. If this issue needs to be discussed with 

certainty, the closest future period may be analyzed, that 

is, it could be stated with certainty that the bio-

environmental condition in the first twenty years (T1) 

won’t be that different with the present condition. In this 

period cleaning the environment seems very remote, 

because Iran is a developing country having enormous oil 

resources and with a support of its oil resources Iran tries 

to increase the domestic production by growing its 

industry, which is still fed with fossil fuel. And also 

scientific progress is not in a level to replace fossil fuels 

so that the clean fuels could be used, the effect of fossil 

fuel is still seen in industries. Therefore, it can certainly 

be claimed that replacing clean fuels is not possible at 

least for the first period, while Tabriz is supposed a 

powerful industrial city in Iran. So considering scenario 

B1, at least for the first period loses its points, and 

therefore, scenario A2 is more probable. And finally 

Tabriz will face chaotic data series in the first period. 

  

  
Figure 6. Diagram of changes in correlation dimension with an increase of embedding dimension for generated data of two 

scenarios B1, A2, monthly rainfall in Tabriz 

 

 

Table 6. The level of correlation dimension of the two scenarios for three periods of future climatic changes 

2080-2099 2046-2065 2011-2030 Correlation Dimension 

5.09 5.15 4.80 A2 

10.17 9.80 non B1 

 

 

CONCLUSION 

 

Rainfall has long been regarded by researchers as 

one the most important hydrological parameters and the 

results obtained from analyzing the process of this 

parameter has a fundamental role in the management of 

water resources. On the other hand, lack of consideration 

in the effects of climate change and in the issues, leads to 

an incorrect understanding in the decision concerning 

water resources and environment. Thus, in this study the 

focus was on the monthly rainfall process in Tabriz as 

well as the effect of climate change, and some steps have 
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been taken to compare rainfall process observed (1971– 

2000) with future rainfalls under climatic change 

conditions. The future rainfall has been categorized into 

the three periods (2011-2030) (2046-2065) and (2080-

2099) under the two scenarios B1 and A2. LARS-WG 

model has been used for generating climate data in 

climatic changes and the chaos theory has also been used 

to analyze this rainfall process. Some methods used in the 

chaotic theory include: Phase space construction, 

autocorrelation and correlation dimension. The phase 

space construction tries to show the presence of one 

attraction in each series of data. But the existence of one 

or some extreme phenomena can distort the presence of 

this attraction in the phase space construction, and the 

severity of these natural phenomena like flood and 

draughts are determined in the diagram of phase space. 

More powerful attraction in the diagram means more 

chaotic behavior in those series. The autocorrelation 

function shows time cycle in each series. The exponential 

descending order of autocorrelation function implies, to 

some extent, the chaotic nature. But it is unable to 

distinguish chaotic behavior from random one. 

 The correlation dimension is the most effective 

method for distinguishing chaotic dynamics behavior 

from random dynamics. The selection of cross-sections 

for identifying the present conditions is supposed to be 

one of the major stages in correlation dimension method. 

An incorrect selection of cross-sections may predict 

completely different conditions for the system. The best 

cross-section is chosen in a distance from convergent 

point {logC(r)=0} which won’t encounter oscillations of 

correlation function diagram and the radius of embedding 

area, and at this distance the slope in diagram lines should 

be straight. Results obtained from performing correlation 

dimension method show a good chaotic exiting for all 

series of scenario A2 with fractal dimension of around 5. 

And the data about the first period of scenario B1 is 

completely stochastic, and also the data of the second and 

the third one have complicated chaotic nature with a 

fractal dimension around 10. So, in general, the behavior 

of scenario B1 can be discussed stochastically.  

Therefore regarding the present conditions of 

Tabriz for the first period, scenario A2 is predicted to 

have good chaotic nature.  
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